izpis_h1_title_alt

Polinomi s celoštevilskimi vrednostmi : delo diplomskega seminarja
ID Udir, Lucija (Author), ID Dolžan, David (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (582,81 KB)
MD5: 125B5631F7C9242A76A0136E13C10BBC

Abstract
V diplomskem delu je predstavljen kolobar Int$(\mathbb{Z})$, ki ga sestavljajo polinomi z racionalnimi koeficienti, ki za cela števila zavzemajo celoštevilske vrednosti. Ta kolobar ima drugačne lastnosti kot večina kolobarjev, ki jih preučujemo v komutativni algebri. Največ pozornosti smo posvetili dejstvu, da ima kolobar polinomov s celoštevilskimi vrednostmi lastnost dveh generatorjev. Znani dokazi te lastnosti so precej zapleteni, saj uporabljajo močne topološke argumente. V tem delu je predstavljen konstruktivni dokaz, ki uporablja osnovna algebraična orodja. Za lažje razumevanje smo definirali pojme, kot so kolobar, ideal, noetherski kolobar in Prüferjeva domena. Za pomoč pri dokazu lastnosti dveh generatorjev smo uporabili razširjen Evklidov algoritem, Skolemovo lastnost karakterizacije idealov z njihovimi ideali vrednosti ter druge potrebne trditve in leme. Skozi celotno diplomsko delo kolobar polinomov s celoštevilskimi vrednostmi primerjamo s kolobarjem polinomov s celoštevilskimi koeficienti in opisane lastnosti ponazorimo z zgledi.

Language:Slovenian
Keywords:kolobar, ideal, polinomi s celoštevilskimi vrednostmi, noetherski kolobarji, Prüferjeva domena
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2022
PID:20.500.12556/RUL-141009 This link opens in a new window
UDC:512
COBISS.SI-ID:122673155 This link opens in a new window
Publication date in RUL:22.09.2022
Views:593
Downloads:62
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Integer-Valued Polynomials
Abstract:
In this thesis we introduce the ring Int$(\mathbb{Z})$, which consists of polynomials with rational coefficients that take integer values for integers. This ring has different properties from most of the rings studied in commutative algebra. We have focused on the fact that the polynomial with integer values has the property of two generators. The known proofs of this property are rather complicated, since they use strong topological arguments. In this paper we present a constructive proof that uses basic algebraic tools. For a better understanding, we define notions such as the ring, the ideal, Noethererian ring and the Pr ̈ufer domain. For the proof of the two-generator property, we have used the extended Euclidean algorithm, the Skolem property of characterising ideals by their ideals of values, and other necessary assertions and lemmas. Throughout the thesis, we compare the polynomial ring with integer values with the polynomial ring with integer coefficients and illustrate the described properties with examples.

Keywords:ring, ideal, integer-valued polynomials, Noetherian ring, Prüfer domain

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back