Details

Osnove polinomske kompleksne dinamike : delo diplomskega seminarja
ID Tiselj, Peter (Author), ID Prezelj, Jasna (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (16,26 MB)
MD5: 9D1FE82D04CFD109F530B216FE28B6ED

Abstract
Preslikave kompleksnih števil CC pomenijo slikanje iz ene dvodimenzionalne ravnine v drugo. Zato graf vsakršne funkcije iz CC leži v štiridimenzionalnem prostoru, kar pomeni, da imamo v našem tridimenzionalnem svetu težave z vizualizacijo takšnih funkcij. V diplomski nalogi obravnavamo in poizkušamo predstaviti kompleksne preslikave tipa qc(z)=z2+c, cC in R(z)=zn+P(z)/Q(z), n2, stopnja polinoma Q pa večja ali enaka stopnji polinoma P. Natančneje, zanimala nas bo konvergenca funkcijskega zaporedja iteratov dane funkcije; iterirati f pomeni s funkcijo f zaporedno delovati na isti vhodni podatek. Napolnjeno Juliajevo množico, označeno s K(f), tvorijo tista kompleksna števila, ki pod iteracijo f ostanejo omejena. Da imamo opraviti s tridimenzionalnimi objekti, definiramo množici U(f) oz. V(f), v katerih so tista kompleksna števila, katerih realni oz. imaginarni deli iteratov pod funkcijo f so omejeni. Ugotovimo, da je za qc(z) napolnjena Juliajeva množica K(qc) enaka U(qc) in da velja K(qc)V(qc). Za družino R(z) pokažemo, da je K(R)=U(R), če je n sod, K(R)U(R), če je n lih in K(R)V(R). Kot primer uporabe smo si v zadnjem delu ogledali iskanje ničel v kompleksnem z Newtonovo metodo in opazovali območja privlaka.

Language:Slovenian
Keywords:iterati kompleksnih polinomov, napolnjena Juliajeva množica, Böttcherjev izrek
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2022
PID:20.500.12556/RUL-140686 This link opens in a new window
UDC:517
COBISS.SI-ID:122321411 This link opens in a new window
Publication date in RUL:17.09.2022
Views:688
Downloads:106
Metadata:XML DC-XML DC-RDF
:
TISELJ, Peter, 2022, Osnove polinomske kompleksne dinamike : delo diplomskega seminarja [online]. Bachelor’s thesis. [Accessed 26 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=140686
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Introduction to complex polynomial dynamics
Abstract:
A complex function f:CC can be viewed as mapping from two dimensional real plane to itself. Consequently, a graph of such function lies in a real four dimensional space, which means that it is hard to visualize in our three dimensional world. In my thesis we investigate the behaviour and visualization of complex maps qc(z)=z2+c, cC and R(z)=zn+P(z)/Q(z), n2, where the degree of polynomial Q is greater or equal to the degree of the polynomial P. More precisely, we examine the convergence of the functional sequence of iterates of a given function; to iterate f is to apply f repeatedly to an input. Those complex numbers which are bounded under iteration with f form the filled Julia set, denoted as K(f). We define sets U(f) and V(f) which contain the complex numbers with the real and imaginary components that remain bounded under iterations with the map f, respectively. We prove that for the qc(z) the filled Julia set K(qc) equals U(qc) and that inequality K(qc)V(qc) holds. For the family of maps R(z) we show that K(R)=U(R) if n is even, K(R)U(R) if n is odd; the inequality K(R)V(R) always holds. In the last section we examine more in detail the Newton method applied on holomorphic functions.

Keywords:iterates of complex polynomials, filled Julia set, Böttcher's theorem

Similar documents

Similar works from RUL:
  1. Magnetno resonančno slikanje vzorcev s kratkim relaksacijskim časom T[spodaj]2
  2. Dinamika taljenja snega slikana z magnetno resonanco
  3. Magnetnoresonančna termometrija
  4. Študij magnetizma spinskih verig v spojini [beta]-TeVO[spodaj]4 z jedrsko magnetno resonanco
  5. Vpliv gostote magnetnega polja na kakovost magnetnoresonančnih slik
Similar works from other Slovenian collections:
  1. Protimikrobne medicinske tekstilije na osnovi hitozanskih nanodelcev za ginekološko zdravljenje
  2. Dynamic contrast-enhanced MRI in malignant pleural mesothelioma
  3. Seznanjenost pacientov z magnetno resonančno preiskavo
  4. Mamografija - kdaj in zakaj
  5. Nevromarketing - nov izziv za sodobni marketing

Back