Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Osnove polinomske kompleksne dinamike : delo diplomskega seminarja
ID
Tiselj, Peter
(
Author
),
ID
Prezelj, Jasna
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(16,26 MB)
MD5: 9D1FE82D04CFD109F530B216FE28B6ED
Image galllery
Abstract
Preslikave kompleksnih števil
C
→
C
pomenijo slikanje iz ene dvodimenzionalne ravnine v drugo. Zato graf vsakršne funkcije iz
C
→
C
leži v štiridimenzionalnem prostoru, kar pomeni, da imamo v našem tridimenzionalnem svetu težave z vizualizacijo takšnih funkcij. V diplomski nalogi obravnavamo in poizkušamo predstaviti kompleksne preslikave tipa
q
c
(
z
)
=
z
2
+
c
,
c
∈
C
in
R
(
z
)
=
z
n
+
P
(
z
)
/
Q
(
z
)
,
n
≥
2
, stopnja polinoma
Q
pa večja ali enaka stopnji polinoma
P
. Natančneje, zanimala nas bo konvergenca funkcijskega zaporedja iteratov dane funkcije; iterirati
f
pomeni s funkcijo
f
zaporedno delovati na isti vhodni podatek. Napolnjeno Juliajevo množico, označeno s
K
(
f
)
, tvorijo tista kompleksna števila, ki pod iteracijo
f
ostanejo omejena. Da imamo opraviti s tridimenzionalnimi objekti, definiramo množici
U
(
f
)
oz.
V
(
f
)
, v katerih so tista kompleksna števila, katerih realni oz. imaginarni deli iteratov pod funkcijo
f
so omejeni. Ugotovimo, da je za
q
c
(
z
)
napolnjena Juliajeva množica
K
(
q
c
)
enaka
U
(
q
c
)
in da velja
K
(
q
c
)
≠
V
(
q
c
)
. Za družino
R
(
z
)
pokažemo, da je
K
(
R
)
=
U
(
R
)
, če je
n
sod,
K
(
R
)
≠
U
(
R
)
, če je
n
lih in
K
(
R
)
≠
V
(
R
)
. Kot primer uporabe smo si v zadnjem delu ogledali iskanje ničel v kompleksnem z Newtonovo metodo in opazovali območja privlaka.
Language:
Slovenian
Keywords:
iterati kompleksnih polinomov
,
napolnjena Juliajeva množica
,
Böttcherjev izrek
Work type:
Final seminar paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FMF - Faculty of Mathematics and Physics
Year:
2022
PID:
20.500.12556/RUL-140686
UDC:
517
COBISS.SI-ID:
122321411
Publication date in RUL:
17.09.2022
Views:
688
Downloads:
106
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
TISELJ, Peter, 2022,
Osnove polinomske kompleksne dinamike : delo diplomskega seminarja
[online]. Bachelor’s thesis. [Accessed 26 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=140686
Copy citation
Share:
Secondary language
Language:
English
Title:
Introduction to complex polynomial dynamics
Abstract:
A complex function
f
:
C
→
C
can be viewed as mapping from two dimensional real plane to itself. Consequently, a graph of such function lies in a real four dimensional space, which means that it is hard to visualize in our three dimensional world. In my thesis we investigate the behaviour and visualization of complex maps
q
c
(
z
)
=
z
2
+
c
,
c
∈
C
and
R
(
z
)
=
z
n
+
P
(
z
)
/
Q
(
z
)
,
n
≥
2
, where the degree of polynomial
Q
is greater or equal to the degree of the polynomial
P
. More precisely, we examine the convergence of the functional sequence of iterates of a given function; to iterate
f
is to apply
f
repeatedly to an input. Those complex numbers which are bounded under iteration with
f
form the filled Julia set, denoted as
K
(
f
)
. We define sets
U
(
f
)
and
V
(
f
)
which contain the complex numbers with the real and imaginary components that remain bounded under iterations with the map
f
, respectively. We prove that for the
q
c
(
z
)
the filled Julia set
K
(
q
c
)
equals
U
(
q
c
)
and that inequality
K
(
q
c
)
≠
V
(
q
c
)
holds. For the family of maps
R
(
z
)
we show that
K
(
R
)
=
U
(
R
)
if
n
is even,
K
(
R
)
≠
U
(
R
)
if
n
is odd; the inequality
K
(
R
)
≠
V
(
R
)
always holds. In the last section we examine more in detail the Newton method applied on holomorphic functions.
Keywords:
iterates of complex polynomials
,
filled Julia set
,
Böttcher's theorem
Similar documents
Similar works from RUL:
Magnetno resonančno slikanje vzorcev s kratkim relaksacijskim časom T[spodaj]2
Dinamika taljenja snega slikana z magnetno resonanco
Magnetnoresonančna termometrija
Študij magnetizma spinskih verig v spojini [beta]-TeVO[spodaj]4 z jedrsko magnetno resonanco
Vpliv gostote magnetnega polja na kakovost magnetnoresonančnih slik
Similar works from other Slovenian collections:
Protimikrobne medicinske tekstilije na osnovi hitozanskih nanodelcev za ginekološko zdravljenje
Dynamic contrast-enhanced MRI in malignant pleural mesothelioma
Seznanjenost pacientov z magnetno resonančno preiskavo
Mamografija - kdaj in zakaj
Nevromarketing - nov izziv za sodobni marketing
Back