izpis_h1_title_alt

Zamenljivost in de Finettijev izrek : delo diplomskega seminarja
ID Zavrtanik, Lenart (Author), ID Bernik, Janez (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (719,47 KB)
MD5: A820DBBFC97D774E92E3DDE0F2240614

Abstract
Končno zaporedje slučajnih spremenljivk je zamenljivo, če je porazdelitev zaporedja nespremenjena za vsako permutacijo indeksov. Neskončno zaporedje $\{ X_i \} _{i \in \mathbb{N}}$ slučajnih spremenljivk je zamenljivo, če so končna zaporedja $X_1,...,X_n$ zamenljiva za vsako naravno število $n$. Če so slučajne spremenljivke zamenljive, potem so tudi enako porazdeljene. Obratno v splošnem ne velja. Velja, ko imamo neskončno zaporedje zamenljivih slučajnih spremenljivk. Očitno pa velja v primeru, ko so enako porazdeljne slučajne spremenljivke tudi neodvisne. De Finettijev izrek pravi, da je zamenljivo neskončno zaporedje Bernoullijevih slučajnih spremenljivk ‘mešanica' neodvisnih zaporedij pogojno na mero $\mu$ na $[0,1]$.

Language:Slovenian
Keywords:zamenljive slučajne spremenljivke, neskončno zamenljivo zaporedje, sklepna statistika, de Finettijev izrek
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2022
PID:20.500.12556/RUL-140685 This link opens in a new window
UDC:519.2
COBISS.SI-ID:122155267 This link opens in a new window
Publication date in RUL:17.09.2022
Views:665
Downloads:54
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Exchangeability and de Finetti's theorem
Abstract:
A finite sequence of random variables is exchangeable if the distribution of the sequence is unchanged for every permutation of the indices. Infinite sequence $\{ X_i \} _{i \in \mathbb{N}}$ of random variables is exchangeable, if the finite sequences $X_1,...,X_n$ are exchangeable for every natural number $n$. If the random variables are exchangeable, then they are identically distributed. In general the opposite does not hold. It holds if we have an infinite sequence of exchangeable random variables. It is obviously true in the case that identically distributed random variables have independent property as well. De Finetti's theorem says that an exchangeable infinite sequence of Bernoulli random variables is a ‘mixture' of independent sequences conditional on measure $\mu$ on $[0,1]$.

Keywords:exchangeable random variables, infinite exchangeable sequence, inferential statistics, de Finetti’s theorem

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back