izpis_h1_title_alt

Characterization of biocomposites and glass fiber epoxy composites based on acoustic emission signals, deep feature extraction, and machine learning
ID Kek, Tomaž (Author), ID Potočnik, Primož (Author), ID Misson, Martin (Author), ID Bergant, Zoran (Author), ID Sorgente, Mario (Author), ID Govekar, Edvard (Author), ID Šturm, Roman (Author)

.pdfPDF - Presentation file, Download (1,45 MB)
MD5: 883D9A60F6A836C10ED26D840956F357
URLURL - Source URL, Visit https://www.mdpi.com/1424-8220/22/18/6886 This link opens in a new window

Abstract
This study presents the results of acoustic emission (AE) measurements and characterization in the loading of biocomposites at room and low temperatures that can be observed in the aviation industry. The fiber optic sensors (FOS) that can outperform electrical sensors in challenging operational environments were used. Standard features were extracted from AE measurements, and a convolutional autoencoder (CAE) was applied to extract deep features from AE signals. Different machine learning methods including discriminant analysis (DA), neural networks (NN), and extreme learning machines (ELM) were used for the construction of classifiers. The analysis is focused on the classification of extracted AE features to classify the source material, to evaluate the predictive importance of extracted features, and to evaluate the ability of used FOS for the evaluation of material behavior under challenging low-temperature environments. The results show the robustness of different CAE configurations for deep feature extraction. The combination of classic and deep features always significantly improves classification accuracy. The best classification accuracy (80.9%) was achieved with a neural network model and generally, more complex nonlinear models (NN, ELM) outperform simple models (DA). In all the considered models, the selected combined features always contain both classic and deep features.

Language:English
Keywords:polymer composites, biocomposites, GFE composites, acoustic emission, deep feature extraction, convolutional autoencoder, machine learning, neural networks
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:FS - Faculty of Mechanical Engineering
Publication status:Published
Publication version:Version of Record
Publication date:13.09.2022
Year:2022
Number of pages:16 str.
Numbering:Vol. 22, iss. 18, art. 6886
PID:20.500.12556/RUL-140622 This link opens in a new window
UDC:620.168:620.179.17:007.52
ISSN on article:1424-8220
DOI:10.3390/s22186886 This link opens in a new window
COBISS.SI-ID:121597443 This link opens in a new window
Publication date in RUL:16.09.2022
Views:571
Downloads:116
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Sensors
Shortened title:Sensors
Publisher:MDPI
ISSN:1424-8220
COBISS.SI-ID:10176278 This link opens in a new window

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.
Licensing start date:13.09.2022

Secondary language

Language:Slovenian
Title:Izpeljava globokih značilk na osnovi signalov AE za karakterizacijo obremenjenih epoksidnih kompozitov iz ogljikovih vlaken in epoksidnih kompozitov iz steklenih vlaken.
Abstract:
Ta študija predstavlja rezultate meritev akustične emisije (AE) in karakterizacijo pri obremenjevanju biokompozitov pri sobnih in nizkih temperaturah, ki jih lahko opazimo v letalski industriji. Uporabljeni so bili senzorji z optičnimi vlakni (FOS), ki lahko prekašajo električne senzorje v zahtevnih delovnih okoljih. Standardne značilke so bile pridobljene iz meritev AE, za pridobivanje globokih značilk iz signalov AE pa je bil uporabljen konvolucijski autoenkoder (CAE). Za izdelavo klasifikatorjev so bile uporabljene različne metode strojnega učenja, vključno z diskriminantno analizo (DA), nevronskimi mrežami (NN) in ekstremnimi učnimi stroji (ELM). Analiza je osredotočena na klasifikacijo izpeljanih AE značilk za razvrstitev izvornega materiala, za ovrednotenje prediktivne pomembnosti izpeljanih značilk in za ovrednotenje zmožnosti uporabljenega FOS za oceno obnašanja materiala v zahtevnih nizkotemperaturnih okoljih. Rezultati kažejo robustnost različnih konfiguracij CAE za izpeljavo globokih zanačilk. Kombinacija klasičnih in globokih značilk vedno bistveno izboljša natančnost klasifikacije. Najboljša klasifikacijska natančnost (80,9 %) je bila dosežena z modelom nevronske mreže in na splošno so kompleksnejši nelinearni modeli (NN, ELM) boljši od enostavnih modelov (DA). Pri vseh obravnavanih modelih izbrane kombinirane značilke vedno vsebujejo tako klasične kot tudi globoke značilke.

Keywords:polimerni kompoziti, biokompoziti, GFE kompoziti, akustična emisija, izpeljava globokih značilk, konvolucijski autoenkoder, strojno učenje, nevronske mreže

Projects

Funder:ARRS - Slovenian Research Agency
Project number:P2-0241
Name:Sinergetika kompleksnih sistemov in procesov

Funder:ARRS - Slovenian Research Agency
Project number:P2-0270
Name:Proizvodni sistemi, laserske tehnologije in spajanje materialov

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back