izpis_h1_title_alt

Krivulje z Minkowskijevim pitagorejskim hodografom : magistrsko delo
ID Melinc, Teja (Author), ID Knez, Marjetka (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (4,35 MB)
MD5: BB86FC95D3D86763A144B47205889AD6

Abstract
Magistrsko delo obravnava poseben tip polinomskih krivulj v prostoru Minkowskega ${\mathbb R}^{2,1}$. Polinomske krivulje je smiselno razviti po Bernsteinovi bazi, kar privede do tako imenovanih Bézierjevih krivulj, za katere poznamo de Casteljaujev algoritem za stabilno računanje točk na krivulji pri danih parametrih. V delu predstavimo prostor Minkowskega ${\mathbb R}^{2,1}$ in posebno skupino krivulj imenovano krivulje s Minkowskijevim pitagorejskim hodografom (MPH krivulje). To so polinomske krivulje iz ${\mathbb R}^{2,1}$, za katere velja, da je parametrična hitrost v Minkowskijevi metriki tudi polinomska. Izkaže se, da so MPH krivulje primerne za reprezentacijo transformacije medialne osi ravninske domene, saj lahko z njihovo uporabo rob območja zapišemo z racionalno krivuljo. MPH krivulje lahko predstavimo s pomočjo elementov Cliffordove algebre, kar nam je v pomoč pri izpeljavi $C^1$ in $C^2$ Hermiteovih interpolacijskih shem. Lema o razbitju domene nam pove, da lahko zahtevna območja razbijemo na manjša in preprostejša območja, na katerih lahko preprosto aproksimiramo rob, nato pa dobljene rezultate le zlepimo skupaj. Posamezni deli so med seboj neodvisni, za aproksimacijo pa lahko izberemo poljubno aproksimacijsko shemo. Predstavi se algoritem, ki danemu območju z $G^1$ interpolacijsko shemo aproksimira rob glede na vnaprej predpisano toleranco.

Language:Slovenian
Keywords:polinomske krivulje, prostor Minkowskega, transformacija medialne osi, krivulje z Minkowskijevim pitagorejskim hodografom, Cliffordova algebra, interpolacija, aproksimacija
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2022
PID:20.500.12556/RUL-140595 This link opens in a new window
UDC:519.6
COBISS.SI-ID:122468867 This link opens in a new window
Publication date in RUL:16.09.2022
Views:631
Downloads:82
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Minkowski Pythagorean hodograph curves
Abstract:
Master thesis considers a special set of polynomial curves in Minkowski space ${\mathbb R}^{2,1}$. A good way to present polynomial curves is to use Bernstein basis, which leads to Bézier curves for which there exists an algorithm that stably computes the point on the curve for a given parameter $t$. We present Minkowski space ${\mathbb R}^{2,1}$ and a special set of curves named Minkowski Pythagorean hodograph curves (shorter MPH curves). These are polynomial curves from ${\mathbb R}^{2,1}$ whose speed measured under the Minkowski metric is a polynomial. These curves are appropriate for the representation of the medial axis transform of a planar domain since in this case the boundary of the domain is represented by a rational curve. MPH curves can be represented with elements of Clifford algebra, which is helpful in the derivation of the approximation scheme for $C^1$ and $C^2$ Hermite interpolation. The domain decomposition lemma says that complicated domains can be decomposed into smaller and simpler domains on which we can approximate the boundary and then only join these solutions together. Individual parts are independent and we can take any interpolation scheme for the approximation of the boundary. In this thesis, we present an algorithm which approximates the boundary of a given domain with the $G^1$ interpolation scheme within the prescribed error tolerance.

Keywords:polynomial curves, Minkowski space, medial axis transform, Minkowski Pythagorean hodograph curves, Clifford algebra, interpolation, aproximation

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back