izpis_h1_title_alt

Algebraična stabilnost vztrajne homologije : magistrsko delo
ID Sfiligoj, Anže (Author), ID Virk, Žiga (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (3,44 MB)
MD5: 137D08B87BD214EFF4EC807D05046089

Abstract
V delu predstavimo koncepte simplicialnih kompleksov, homologije, filtracij, vztrajne homologije, vztrajnostnih modulov in črtnih kod. Na eni strani vpeljemo pojem razdalje med vztrajnostnimi moduli, algebraičnimi objekti, ki opisujejo vztrajne homološke grupe. Na drugi strani pa vpeljemo pojem razdalje med črtnimi kodami, ki so vizualizacija vztrajnostnih modulov. Z uporabo teh konceptov formuliramo in dokažemo izrek o algebraični stabilnosti vztrajne homologije za krotke vztrajnostne module. Ta izrek je ključni argument, ki potrdi, da je vztrajna homologija dobro orodje kadar imamo opravka s hrupnimi podatki.

Language:Slovenian
Keywords:simpleks, simplicialni kompleks, filtracija, vztrajna homologija, vztrajnostni modul, črtna koda, prepletanje, ujemanje, prepletna razdalja, razdalja ozkega grla, stabilnost
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2022
PID:20.500.12556/RUL-140592 This link opens in a new window
UDC:515.14
COBISS.SI-ID:121437187 This link opens in a new window
Publication date in RUL:16.09.2022
Views:737
Downloads:65
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Algebraic stability of persistent homology
Abstract:
In this work we present the concepts of simplicial complexes, homology, filtrations, persistent homology, persistent modules and barcodes. On one hand we introduce a notion of distance between persistence modules, algebraic objects which describe persistent homology groups. On the other hand we introduce a notion of distance between barcodes, which are a way of visualising of persistent modules. Using these concepts we state and prove the algebraic stability theorem for q-tame persistent modules. This theorem is the key argument which confirms that persistent homology is a useful tool when dealing with noisy data.

Keywords:simplex, simplicial complex, filtration, persistent homology, persistent module, barcode, interleaving, matching, interleaving distance, bottleneck distance, stability

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back