izpis_h1_title_alt

Sprehodi z naključnimi permutacijami : delo diplomskega seminarja
ID Milanez, Tim (Author), ID Jezernik, Urban (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (627,72 KB)
MD5: 6E1D80D268C4FF1D8ADBE91F7529CC99

Abstract
Naj bosta $g, h$ naključno izbrana elementa permutacijske grupe $S_n$. Ob predpostavki, da $g, h$ generirata $S_n$, pokažemo, da velja ${\rm diam}({\rm Cay}(S_n, \{g, h, g^{-1}, h^{-1}\})) \leq O(n^2(\log n)^c)$ z verjetnostjo $1- o(1)$ za neko konstanto $c$. Pri tem dokaz naslonimo na dejstvo, da imajo Schreierjevi grafi množice $r$-teric različnih števil iz $\{1, 2,\ldots, n\}$ glede na množico $d$ naključnih permutacij iz $S_n$ skoraj gotovo dobre ekspanzivne lastnosti, kar tudi dokažemo.

Language:Slovenian
Keywords:ekspanzivni grafi, permutacijske grupe, Cayleyjev graf, premer, naključni sprehodi
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2022
PID:20.500.12556/RUL-140303 This link opens in a new window
UDC:512
COBISS.SI-ID:121240835 This link opens in a new window
Publication date in RUL:14.09.2022
Views:1529
Downloads:118
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Walks with random permutations
Abstract:
Let $g, h$ be a random pair of elements of the permutation group $S_n$. Under the assumption that $g, h$ generate $S_n$, we show that ${\rm diam}({\rm Cay}(S_n, \{g, h, g^{-1}, h^{-1}\})) \leq O(n^2(\log n)^c)$ with probabilty $1-o(1)$ for some constant $c$. We base our proof on the fact that Schreier graphs on the set of $r$-tuples of distinct elements of $\{1, 2,\ldots, n\}$ with respect to the set of $d$ random permutations are almost always good expanders, which we also prove.

Keywords:expander graphs, permutation groups, Cayley graph, diameter, random walks

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back