izpis_h1_title_alt

Priporočilni sistem za izdelke vsakdanje rabe z uporabo nevronskih mrež
ID GRŽINIČ, MATEJ (Author), ID Možina, Martin (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (495,94 KB)
MD5: 1D0A0B6EEE81609B721CD5AF940E0233

Abstract
V okviru diplomske naloge je bil ustvarjen priporočilni sistem za napovedovanje izdelkov spletne trgovine. Uporabljeni podatki prihajajo iz podatkovne zbirke Instacart, ki je dostopna na spletni strani Kaggle. Priporočilni sistemi filtrirajo veliko količino podatkov in uporabnikom prikažejo le njim zanimivo vsebino. Za gradnjo priporočilnega sistema je bila uporabljena nevronska mreža, ki v tem področju še ni dosti raziskana, vendar obeta zelo pomenljive rezultate. Nevronsko mreža je zgrajena po principu skupnega filtriranja. Testiranje rezultatov je ločeno na izdelke, ki jih uporabnik še ni kupil, in izdelke, ki jih je uporabnik kupil že v preteklosti. Za testiranje novih izdelkov je uporabljena mera HR@10. Za že kupljene pa sta uporabljeni meri priklica in točnosti. Pridobljeni rezultati so primerjani z rezultati napovedanja najbolj popularnih izdelkov. Pri napovedovanju novih izdelkov je naš model dosegel boljše rezultate in slabše pri izdelkih, ki jih je uporabnik že kupil v preteklosti.

Language:Slovenian
Keywords:priporočilni sistem, nevronske mreže, napoved nakupov
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2022
PID:20.500.12556/RUL-140250 This link opens in a new window
COBISS.SI-ID:121575939 This link opens in a new window
Publication date in RUL:13.09.2022
Views:677
Downloads:63
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Recommender System for Everyday Products Using Neural Networks
Abstract:
As part of the diploma thesis, we created a recommender system for predicting items in an online shop. The data used come from the Instacart database, which is accessible on the Kaggle website. Recommender systems filter a large amount of data and show users only the content that interests them. The recommender system has been built using a neural network. This approach has not been researched much in this field, but it is yielding promising results. The neural network has been built using collaborative filtering. The testing of results is divided into items that the user has never bought and items that the user already bought in the past. For evaluating the new items, the metric HR@10 was used and for evaluating the items the user bought in the past, the metrics precision and recall were used. The obtained results were compared with the results of predicting the most popular items. Our model performed better when predicting new products and worse when predicting products that the user bought in the past.

Keywords:recommender system, neural network, purchase prediction

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back