Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Generiranje slik oči z globokimi generativnimi modeli
ID
Tomašević, Darian
(
Author
),
ID
Štruc, Vitomir
(
Mentor
)
More about this mentor...
,
ID
Peer, Peter
(
Comentor
)
PDF - Presentation file,
Download
(10,73 MB)
MD5: 7A91C404B4A1D72428A1B9623185E5D9
Image galllery
Abstract
Večina modernih pristopov za segmentacijo oči temelji na metodah globokega učenja, ki potrebujejo velike količine anotiranih podatkov. Zbiranje in anotacija tovrstnih biometričnih podatkov je izjemno dolgotrajna, medtem ko je njihova uporaba ponavadi omejena zaradi varovanja zasebnosti. V magistrskem delu predstavimo rešitev v obliki novega ogrodja za generiranje sintetičnih podatkov, poimenovanega BiOcularGAN, ki je zmožen sinteze fotorealističnih slik oči v vidnem in bližnje infrardečem svetlobnem spektru ter pripadajočih segmentacijskih mask. Pristop temelji na izvirnem dvo-vejnem modelu StyleGAN2, ki omogoči generiranje kvalitetnih in poravnanih bimodalnih slik oči. Z uporabo latentnih informacij, prisotnih v modelu, je predstavljeno ogrodje zmožno ustvarjanja izjemno natančnih pripadajočih segmentacijskih mask na podlagi izredno majhnega števila ročno anotiranih primerov. Za evalvacijo uspešnosti ogrodja BiOcularGAN izvedemo eksperimente na petih podatkovnih bazah oči in analiziramo vpliv hkratnega generiranja bimodalnih podatkov na kvaliteto pridobljenih slik in mask. Pokažemo tudi, da lahko ustvarjene sintetične podatkovne baze uporabimo za učenje sodobnih globokih segmentacijskih modelov, ki so zmožni natančne segmentacije novih in raznolikih slik oči.
Language:
Slovenian
Keywords:
globoko učenje
,
slikovna biometrija
,
bogatenje podatkov
,
nevronske mreže
,
generativne nasprotniške mreže
Work type:
Master's thesis/paper
Typology:
2.09 - Master's Thesis
Organization:
FRI - Faculty of Computer and Information Science
Year:
2022
PID:
20.500.12556/RUL-140177
COBISS.SI-ID:
122057987
Publication date in RUL:
12.09.2022
Views:
1322
Downloads:
231
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
TOMAŠEVIĆ, Darian, 2022,
Generiranje slik oči z globokimi generativnimi modeli
[online]. Master’s thesis. [Accessed 6 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=140177
Copy citation
Share:
Secondary language
Language:
English
Title:
Generating ocular images with deep generative models
Abstract:
Most modern segmentation techniques for ocular images are based on deep learning methods and are thus critically dependent on large-scale annotated datasets. Unfortunately, suitable datasets are labour-intensive to gather and often raise privacy concerns. To address these issues, we present a novel framework, called BiOcularGAN, capable of generating large-scale synthetic datasets of photorealistic ocular images, in both the visible and the near-infrared light spectrum, along with corresponding segmentation masks. The framework is centered around an innovative Dual-Branch StyleGAN2 model, which facilitates the generation of high-quality aligned bimodal images. By exploiting latent features of the model, the framework is also able to produce extremely accurate segmentation masks of the synthetic images, based only on a handful of manually labeled examples, therefore minimizing human involvement. We evaluate the BiOcularGAN framework through extensive experiments across five diverse ocular datasets and analyze how bimodal data generation affects the quality of produced images and masks. In addition, we showcase that the generated data can be employed to train highly successful deep segmentation models, which can generalize well to other real-world datasets.
Keywords:
deep learning
,
image-based biometrics
,
data augmentation
,
neural networks
,
generative adversarial networks
Similar documents
Similar works from RUL:
Izboljšava klasifikacije mamogramov z generiranjem umetnih podatkov in prenosom učenja
Zaznavanje bazena taline pri obločnem navarjanju z žico
Generating ocular images with deep generative models
Navidezno pomerjanje frizur s postopki računalniškega vida
Staranje obrazov s pomočjo globokih generativnih nevronskih mrež
Similar works from other Slovenian collections:
Ocenjevanje starosti osebe na osnovi digitalnih posnetkov z uporabo konvolucijskih nevronskih mrež
Prepoznavanje jedi iz digitalnih slik s pomočjo konvolucijskih nevronskih mrež
Storitev interaktivnega spremljanja avdiovizualnih vsebin v okolju IPTV
Back