izpis_h1_title_alt

Izreki o ničlah : delo diplomskega seminarja
ID Mikoš, Jon (Author), ID Cimprič, Jaka (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (682,09 KB)
MD5: 5D45897879F9CA364551204CA4D78313

Abstract
Hilbertov izrek o ničlah tvori osnovo algebraične geometrije. V delu izpeljemo analogno trditev za realna števila – realni izrek o ničlah. Nato vpeljemo posplošitev pojma realnosti na nekomutativne kolobarje. Dokažemo korespondenco med ideali v kolobarju realnih polinomov in kolobarju kvaternionskih polinomskih funkcij. S tem rezultatom prevedemo kvaternionski izrek o ničlah na realnega. Na koncu podamo znane posplošitve in nadaljnje smeri obravnave.

Language:Slovenian
Keywords:realna polja, realni izrek o ničlah, kvaternionski izrek o ničlah, kolobarji z involucijo
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2022
PID:20.500.12556/RUL-140150 This link opens in a new window
UDC:512
COBISS.SI-ID:120961795 This link opens in a new window
Publication date in RUL:11.09.2022
Views:703
Downloads:95
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Nullstellensätze
Abstract:
Hilbert’s Nullstellensatz forms the basis of algebraic geometry. In this paper we derive an analogous statement over the field of real numbers – the real Nullstellensatz. After that we introduce a generalization of real rings to the noncommutative setting. We prove a correspondence of ideals in the ring of real polynomials with the ideals in the ring of quaternionic polynomial functions. With this result we reduce the quaternionic Nullstellensatz to the real one. Finally, we state known generalizations and some further courses of study.

Keywords:real fields, real Nullstellensatz, quaternionic Nullstellensatz, rings with involution

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back