izpis_h1_title_alt

Mešanje z naključnimi transpozicijami : delo diplomskega seminarja
ID Miščič, Matevž (Author), ID Jezernik, Urban (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (575,71 KB)
MD5: 2AC9ED3CF03E4444778BAEB52073DB8D

Abstract
V diplomski nalogi dokažemo, da pri mešanju z naključnimi transpozicijami pride do odreza ob času $\frac{1}{2}n\log{n}$. Pri dokazu zgornje meje odreza uporabimo nekomutativno Fourierovo transformacijo, za njeno uporabo pa predstavimo teorijo upodobitev končnih grup s posebnim poudarkom na simetrične grupe. Klasificiramo Spechtove module in pokažemo, da standardni politabloidi tvorijo njihove baze. Spodnjo mejo odreza dokažemo z verjetnostnimi metodami. Predstavimo tudi nekaj nadaljnjih primerov odreza pri sprehodih po grupah.

Language:Slovenian
Keywords:upodobitve grup, simetrične grupe, naključni sprehodi, naključne transpozicije
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2022
PID:20.500.12556/RUL-139856 This link opens in a new window
UDC:512
COBISS.SI-ID:120837379 This link opens in a new window
Publication date in RUL:08.09.2022
Views:1014
Downloads:223
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Shuffling by random transpositions
Abstract:
In this thesis we prove that in the case of random transposition shuffling cutoff occurs at time $\frac{1}{2}n\log{n}$. The upper bound is proved using noncommutative Fourier transform. To understand it representation theory of finite groups is presented with emphasis on symmetric groups. Specht modules are classified and it is shown that standard polytabloids form their bases. Lower bound is proved using methods from probability. We also discuss some further examples of cutoff for random walks on groups.

Keywords:group representations, symmetric groups, random walks, random transpositions

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back