izpis_h1_title_alt

Nadzorovano globoko učenje za segmentacijo razpok v betonu
ID ŠUC, MATIC (Author), ID Skočaj, Danijel (Mentor) More about this mentor... This link opens in a new window, ID Tabernik, Domen (Comentor)

.pdfPDF - Presentation file, Download (5,44 MB)
MD5: 1AA7ED4F3506D86253963D5DE1196174

Abstract
Eden izmed problemov upravljanja z infrastrukturo je pregledovanje njene kakovosti, ki preverja stanje infrastrukture kot so cestišča, mostovi in podobni objekti. Razpoke so zelo zgodnji indikator morebitnega slabšanja stanja infrastrukture objektov, kar je lahko nevarno za uporabnike. Hitra in natančna detekcija razpok lahko bistveno zmanjša stroške vzdrževanja in izboljša učinkovitost. V diplomski nalogi je predstavljena rešitev tega problema z nadzorovanim globokim učenjem za segmentacijo razpok v betonu. Predstavljeni so tudi dodatki k rešitvi, ki znatno pripomorejo k izboljšanju učinkovitosti in zmogljivosti modela. Rešitev je ovrednotena na več različnih slikovnih množicah ter primerjana s sorodnimi pristopi.

Language:Slovenian
Keywords:nevronske mreže, segmentacija, klasifikacija, računalniški vid, globoko učenje, razpoke v betonu
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2022
PID:20.500.12556/RUL-139724 This link opens in a new window
COBISS.SI-ID:121455363 This link opens in a new window
Publication date in RUL:06.09.2022
Views:1041
Downloads:76
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Supervised deep learning for concrete crack segmentation
Abstract:
One of the problems of infrastructure maintenance is the review of its quality, which controls the state of infrastructure, such as roads, bridges and similar objects. Cracks are a very early indicator of the possible deterioration of infrastructure objects, which can be dangerous for users. Fast and accurate detection of these cracks can reduce maintenance costs and improve efficiency. The diploma thesis presents a solution to this problem by applying supervised deep learning for detection of cracks on concrete surfaces. Additions to the solution are also presented, which significantly help to improve the efficiency and performance of the model. The solution was tested on several different image datasets and compared to related approaches.

Keywords:neural networks, segmentation, classification, computer vision, deep learning, concrete cracks

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back