Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Zaznavanje gest v video tokovih na vgrajeni napravi
ID
Rolih, Blaž
(
Author
),
ID
Čehovin Zajc, Luka
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(4,32 MB)
MD5: 8B2755ED83AE96EB118D51D4AD5A33B7
Image galllery
Abstract
V okviru diplomskega dela je implementiran in ovrednoten nosljiv prototip za zaznavanje ročnih gest, ki deluje na vgrajeni napravi OAK-D iz platforme DepthAI. Vgrajena naprava omogoča učinkovit zajem slike in obdelavo le-te z uporabo raznih operacij računalniškega vida, vključno z izvajanjem globokih nevronskih mrež. Prototip z uporabo več zaporednih nevronskih mrež in vmesnih operacij določi pozicijo roke v prvoosebnem načinu, roki sledi in glede na časovni potek pozicije roke določi gesto. Vse to skoraj v celoti teče na vgrajeni napravi, kar razbremeni gostiteljski sistem in omogoča nizke zakasnitve pri zaznavanju. Za praktično testiranje je implementirano upravljanje predvajalnika glasbe. S tem namenom je zbrana podatkovna množica gest, ki kljub svojemu omejenemu obsegu omogoča, da se sistem zanesljivo nauči prepoznavati različne geste. Sistem je eksperimentalno evalviran na testni množici, kjer dosega zaželeno točnost. Dobro se obnese tudi v realnem scenariju, kjer je bil sistem preizkušen s strani testnih uporabnikov z upravljanjem glasbe v realnem času.
Language:
Slovenian
Keywords:
geste
,
računalniški vid na vgrajenih napravah
,
DepthAI
,
CNN
,
LSTM
Work type:
Bachelor thesis/paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FRI - Faculty of Computer and Information Science
Year:
2022
PID:
20.500.12556/RUL-139723
COBISS.SI-ID:
121799939
Publication date in RUL:
06.09.2022
Views:
1108
Downloads:
151
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
ROLIH, Blaž, 2022,
Zaznavanje gest v video tokovih na vgrajeni napravi
[online]. Bachelor’s thesis. [Accessed 23 March 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=139723
Copy citation
Share:
Secondary language
Language:
English
Title:
Gesture recognition in video streams on an embedded device
Abstract:
In this diploma thesis, a wearable prototype for the detection of hand gestures is implemented and evaluated, which works on the OAK-D embedded device from the DepthAI platform. Embedded device is capable of efficient image capture and image processing using various computer vision operations, including deep neural networks. Using a sequence of neural networks and intermediate operations, the prototype determines the position of the hand in first-person mode, tracks the hand and, based on the time course of the hand position, determines the gesture. All of this runs almost entirely on the embedded device, offloading the host system and enabling low detection latencies. For practical testing, music player control is implemented. For this purpose, a dataset of gestures has been collected, which, despite its limited scope, enables the system to reliably learn to recognize different gestures. The system is experimentally evaluated on a test set, where it achieves the desired accuracy. It also performs well in a real-world scenario where the system has been tested by test users controlling music playback in real-time.
Keywords:
gestures
,
embedded computer vision
,
DepthAI
,
CNN
,
LSTM
Similar documents
Similar works from RUL:
Determining scene illumination in augmented reality
Algorithms for super-resolution in 3D graphics
Reflectance probe interpolation for fast rendering of reflective materials
Deepfake detection using convolutional neural networks
Deep learning for shape abstraction of cellular compartments
Similar works from other Slovenian collections:
No similar works found
Back