izpis_h1_title_alt

Izboljšava obravnave negacije v velikih jezikovnih modelih
ID Kranjec, Matej (Author), ID Robnik Šikonja, Marko (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (746,11 KB)
MD5: F60E1D57CFEDCBE322037E24A60AEB0B

Abstract
V diplomski nalogi smo preizkusili metodo za izboljšavo klasifikacije globokih nevronskih mrež s predznanjem o negaciji. Najuspešnejši jezikovni modeli, kot na primer BERT ali ELMo, so uspešni pri klasifikaciji besedil, a odpovejo pri negaciji. Prednaučene jezikovne modele smo prilagodili, da tudi v slovenščini bolje delujejo z negacijo. To smo dosegli z spreminjanjem funkcije izgube nevronske mreže ter prilagajanjem obstoječih modelov. Metodo smo preizkusili na prilagojenem korpusu z dodanimi negacijami osnovnih stavkov. Metoda je uspešno zmanjšala delež napačnih napovedi v negiranih stavkih pri maskiranem jezikovnem modelu, točnost na nalogah iz slovenske zbirke SuperGLUE pa je ponekod izboljšala, drugje pa poslabšala.

Language:Slovenian
Keywords:globoke nevronske mreže, klasifikacija, obravnava negacije, veliki vnaprej naučeni jezikovni modeli
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2022
PID:20.500.12556/RUL-139701 This link opens in a new window
COBISS.SI-ID:121785859 This link opens in a new window
Publication date in RUL:06.09.2022
Views:1340
Downloads:1284
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Improving negation handling in large language models
Abstract:
In the thesis we have tested a method for improved classification of deep neural networks with prior knowledge of negation. State of the art language models, such as ELMo and BERT, are successful at text classification, but fail when there is negation involved. We adjusted pre-trained language models to work better with negation in Slovene. We modified the loss function of the neural networks and retrained the models. We have tested the method on a modified corpus with added negations of original sentences. The method successfully reduced the error in the negated sentences for masked language models, and it increased the accuracy for some tasks from the Slovene version of the SuperGLUE benchmark but decreased for others.

Keywords:deep neural networks, classification, negation modeling, large pretrained language models

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back