izpis_h1_title_alt

Segmentacija očesnega ožilja iz slikovnih podatkov z globokim konvolucijskim omrežjem
ID ROT, ŽIGA (Author), ID Štruc, Vitomir (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (10,44 MB)
MD5: 21DD452068F74D40BE38D54660C2AD71

Abstract
V tem delu predstavimo izvedbo mehanizma, ki iz slik očesa izloča ožilje beločnice – biometrično karakteristiko, ki se lahko uporabi v sistemih za razpoznavanje šarenice za izboljšanje zanesljivosti in natančnosti razpoznavanja. Model sestavljata dve stopnji. Prva skrbi za izločanje območja zanimanja – beločnice, iz katere nato druga stopnja segmentira ožilje. Našo izvedbo utemeljimo z dvema eksperimentoma. V prvem pokažemo vpliv izločanja območja zanimanja na končni izhod. V drugem prikažemo razliko v uspešnosti segmentacije med enorazredno in večrazredno segmentacijo beločnice.

Language:Slovenian
Keywords:segmentacija slik, ožilje beločnice, globoke konvolucijske nevronske mreže, U-net
Work type:Bachelor thesis/paper
Organization:FE - Faculty of Electrical Engineering
Year:2022
PID:20.500.12556/RUL-139570 This link opens in a new window
COBISS.SI-ID:120224771 This link opens in a new window
Publication date in RUL:05.09.2022
Views:636
Downloads:80
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Segmentation of ocular vasculature from visual data with a deep convolutional network
Abstract:
This thesis presents the implementation of a model that can extract scleral vasculature from image data – a biometric feature which can be used in iris-based biometric recognition systems to enhance robustness and accuracy. The model consists of two stages. The first stage is used for extraction of the region of interest – the sclera, from which then the next stage segments the vascular structure. We justify our design with two experiments. In the first one, we show the impact of prior extraction of the region of interest on the final output. In the second one, we present the difference in segmentation quality between binary and multi-class versions of sclera segmentation.

Keywords:image segmentation, sclera vascularity, deep convolutional neural networks, U-net

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back