Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Raziskava metod strojnega učenja za napovedovanje zvočnega tlaka
ID
Anko, Matej
(
Author
),
ID
Slavič, Janko
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(2,74 MB)
MD5: 2FF51A5F9F5A967F31FAD591B750A1AD
Image galllery
Abstract
Velike količine podatkov, ki se beležijo tekom proizvodnega procesa in končne kontrole nam omogočajo, da z uporabo metod strojnega učenja izdelamo model, ki napove vrednost meritve na končni kontroli še preden je bila ta izvedena. Raziskali smo vpliv masne neuravnoteženosti na amplitudo odziva in kako nastane hrup. Prikazali smo celoten proces izdelave modela z uporabo Python knjižnice Scikit-learn. Izdelali smo model za napoved amplitud zvočnega tlaka pri posameznih lastnih frekvencah in modele za napoved hitrosti vibracij ter jih ocenili.
Language:
Slovenian
Keywords:
strojno učenje
,
scikit-learn
,
masno uravnoteževanje
,
zvočni tlak
,
vibracije
Work type:
Final paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FS - Faculty of Mechanical Engineering
Place of publishing:
Ljubljana
Publisher:
[M. Anko]
Year:
2022
Number of pages:
XIV, 45 f.
PID:
20.500.12556/RUL-139126
UDC:
004.83+534(043.2)
COBISS.SI-ID:
121344003
Publication date in RUL:
31.08.2022
Views:
859
Downloads:
129
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Secondary language
Language:
English
Title:
A research on machine learning for the estimation of sound pressure level
Abstract:
Large amounts of data recorded during manufacturing process and final inspection enable us to use machine learning methods to create a model that predicts value of the measurement at end of line inspection even before it has been carried out. We researched the effects of mass imbalance on the amplitude response and how noise is generated. We showed the entire process of making the model with the use of Python library Scikit learn. We created a model for prediction of sound pressure level and model for prediction of vibration velocity and evaluated them.
Keywords:
machine learning
,
scikit-learn
,
mass balancing
,
sound pressure
,
vibrations
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back