izpis_h1_title_alt

Klasifikacija poškodovanosti strojev z metodami dinamskega podstrukturiranja
ID Senčič, Jan (Author), ID Čepon, Gregor (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (3,05 MB)
MD5: 1920BE0236BE9BFF4CCF835722B31DC0

Abstract
V nalogi je prikazana uporaba metod strojnega učenja za klasifikacijo poškodovanosti struktur. Predstavljena sta dva pristopa k razvoju digitalnega dvojčka, kjer pri obeh kombiniramo dinamske metode obravnavanja struktur z metodami strojnega učenja. Prvo predstavimo kombinacijo analitične obravnave z uporabo modalne analize, kjer generacija učnih podatkov poteka na enostavnem primeru. V drugem delu obravnavamo primer kompleksne strukture, kjer uporabimo numerične modele. Pri tem si pomagamo z metodami dinamskega podstrukturiranja, ki nam omogoči sklop posameznih podstruktur v celotno strukturo. Sledi generacija učnih podatkov s uporabo variacije togosti na mestu poškodovanosti. Na obeh bazah učnih podatkov izvedemo nadzorovano učenje metod strojnega učenja. Sledi ponovna generacija nove baze testnih podatkov za preverjanje pravilne klasifikacije. Verjetnosti pravilne klasifikacije so primerjane med uporabljenimi metodami strojnega učenja. Najboljše metode strojnega učenja so ovrednotene med seboj. Za konec komentiramo uporabnost prikazanih postopkov in uporabe strojnega učenja za namene klasifikacije poškodovanosti strojev.

Language:Slovenian
Keywords:modalna analiza, podstrukturiranje, strojno učenje, klasifikacija poškodovanosti, metoda podpornih vektorjev, večslojni perceptron, diskriminantna analiza
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FS - Faculty of Mechanical Engineering
Place of publishing:Ljubljana
Publisher:[J. Senčič]
Year:2022
Number of pages:XXII, 59 str.
PID:20.500.12556/RUL-139013 This link opens in a new window
UDC:620.192.4:004.85(043.2)
COBISS.SI-ID:119889923 This link opens in a new window
Publication date in RUL:29.08.2022
Views:824
Downloads:92
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Machine damage classification using a dynamic substructuring approach
Abstract:
The thesis presents the use of machine learning methods for the classification of structural damage. Two methods for development of a digital twin are presented, both of which combine dynamic methods of treating the structure with machine learning methods. First, we present a combination of analytical model using modal analysis, where the generation of learning data takes place on a simple example. In the second part, we consider the case of a complex structure where numerical models are used. Here we applied the methods of dynamic substructuring, which allows us to assemble individual substructures into a whole structure. The generation of training data is performed using a variation of stiffness at the damage site. We perform supervised learning of machine learning methods on both learning databases. This is followed by the re-generation of a new test database to verify correct classification. Probabilities of correct classification are compared between the applied machine learning methods. The best performing machine learning methods are evaluated between each other. Finally, we comment on the applicability of the presented procedures and the use of machine learning for the purposes of machine damage classification.

Keywords:modal analysis, substructuring, machine learning, damage classification, support vector machine, multi-layered perceptron, discriminant analysis

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back