izpis_h1_title_alt

Sekvenciranje mitohondrijskega genoma z uporabo CRISPR/Cas9 in tehnologije sekvenciranja DNA z nanoporo
ID Slapnik, Barbara (Author), ID Debeljak, Maruša (Mentor) More about this mentor... This link opens in a new window, ID Župunski, Vera (Comentor)

.pdfPDF - Presentation file, Download (3,20 MB)
MD5: 9EDD5B1CB876E1C4CDEBE1ADAD090F28

Abstract
Genetske spremembe v mitohondrijskem genomu so pomemben dejavnik pri razvoju mitohondrijskih bolezni. Te uvrščamo v skupino heterogenih bolezni, za katere je značilno pomanjkanje celične energije. Priprava knjižnice za sekvenciranje z uporabo CRISPR/Cas9 in tehnologija sekvenciranja DNA z nanoporo nam omogočata obogatitev mitohondrijskega genoma brez tarčnega pomnoževanja s PCR. Produkt takšnega sekvenciranja so dolgi odčitki (>10 kb), ki omogočajo sestavljanje mitohondrijskega genoma de novo in detekcijo večjih delecij ter ponovitvenih regij. Pri magistrskem delu smo dokazali, da lahko s tehnologijo CRISPR/Cas9 in sekvenciranjem z nanoporo obogatimo mitohondrijski genom in generiramo odčitke, ki pokrijejo celotno dolžino mitohondrijske DNA (mtDNA). Preverili smo različne bioinformacijske pristope, ki jih lahko uporabljamo pri analizi podatkov in rezultate med sabo primerjali za iskanje genetskih sprememb. Nato smo preverili zmožnosti tehnologije sekvenciranja z nanoporo za detekcijo nizkostopenjskih heteroplazmij, pri katerih celica vsebuje nizek delež mutirane mtDNA v primerjavi z mtDNA divjega tipa. Ugotovili smo, da lahko s to tehnologijo detektiramo do 10 % heteroplazmije. Detekcija heteroplazmije je pomembna pri diagnozi mitohondrijskih bolezni, saj lahko učinek ozkega grla med oogenezo in embriogenezo vodi do razvoja višje stopnje heteroplazmije, ki povzroči fenotipsko izražanje bolezni. Tehnologija sekvenciranja z nanoporo nam omogoča tudi identifikacijo modificiranih baz, ki so pomembne pri regulaciji izražanja genov. Pri analizi smo identificirali prisotnost 5-metilcitozinov na mtDNA in ugotovili, da je njihova frekvenca nizka. Uporaba zgoraj omenjenega pristopa bi omogočila globlje razumevanje mitohondrijske genetike in epigenetike ter posledično delovanja mitohondrija.

Language:Slovenian
Keywords:mitohondrijski genom, mitohondrijske bolezni, heteroplazmija, epigenetika, sekvenciranje DNA z nanoporo
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FKKT - Faculty of Chemistry and Chemical Technology
Year:2022
PID:20.500.12556/RUL-138803 This link opens in a new window
COBISS.SI-ID:120528899 This link opens in a new window
Publication date in RUL:18.08.2022
Views:952
Downloads:187
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Sequencing of mitochondrial genome with CRISPR/Cas9 technology and nanopore sequencing
Abstract:
Genetic variants of mitochondrial genome are an important driver of mitochondrial disorder pathology. Mitochondrial disorders are heterogeneous diseases characterized by a lack of cellular energy. Using targeted nanopore sequencing in combination with CRISPR/Cas9 technology enables amplification-free sequence enrichment of mitochondrial DNA (mtDNA). Nanopore sequencing produces long reads (> 10 kb), which improves de novo assembly and detection of large sporadic deletions and tandem repeats. In this study, we demonstrated that this technology enriches the mitochondrial genome and generates full-length nanopore reads of mtDNA. We tested different bioinformatics approaches for analyzing the data and compared the results of these approaches for variant calling. We verified the ability of nanopore sequencing for the detection of low-level DNA heteroplasmy, where the cell contains a low proportion of mutated mtDNA molecules compared to wild-type mtDNA. We determined that nanopore sequencing is able to detect down to 10 % heteroplasmy. Detecting a low-heteroplasmic variance is crucial for the diagnosis of mitochondrial diseases, as the bottleneck effect during oogenesis and embryogenesis can lead to the sampling and subsequent expansion of rare mutant mtDNA. Nanopore sequencing technology is also able to detect modified bases that are important for epigenetic control of gene expression. We identified the presence of 5-methylcytosines on mtDNA and observed that their frequency is low. The application of the presented approach would provide deeper understanding of mitochondrial genetics, epigenetics and consequently, of mitochondrial biology.

Keywords:mitochondrial genome, mitochondrial diseases, heteroplasmy, epigenetics, nanopore sequencing

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back