izpis_h1_title_alt

Inercije matričnih napolnitev
ID CIGLIČ, MATJAŽ (Author), ID Zalar, Aljaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (671,54 KB)
MD5: 7BED22FAD6C505713145301F34673C07

Abstract
Problem matričnih napolnitev sprašuje po lastnostih matrik, dobljenih iz delno napolnjenih matrik, pri čemer manjkajoče vhode poljubno izberemo. Problem se pojavlja na številnih področjih, kot so problemi momentov, realna algebraična geometrija, študij velikih podatkov, itd. V diplomskem delu se osredotočimo na študij možnih inercij napolnitev posebnih hermitskih matrik. Z uporabo orodij linearne algebre pokažemo, da lahko vse možne inercije parametriziramo s celoštevilskimi točkami znotraj inercijskega politopa. Predstavimo tudi povezavo posebnih matrik s tetivnimi grafi in prek nje izpeljemo formulo za cenejši izračun inercije matrike. Algoritme za izračun inercijskega politopa in inercije matrik posebne oblike tudi implementiramo in delovanje prikažemo na numeričnih primerih.

Language:Slovenian
Keywords:Matrične napolnitve, hermitske matrike, inercija matrik, lastne vrednosti, inercijski politop, tetivni grafi, drevesa klik, popolna eliminacijska ureditev
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2022
PID:20.500.12556/RUL-138420 This link opens in a new window
COBISS.SI-ID:116096003 This link opens in a new window
Publication date in RUL:20.07.2022
Views:787
Downloads:116
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Inertia of matrix completions
Abstract:
The matrix completion problem asks to describe the properties of matrices, obtained as completions of given matrices with some missing entries. The problem is important due to its applications in many areas, such as moment problems, real algebraic geometry, big data analysis, etc. In the diploma thesis we focus on the study of possible inertia of completions of special hermitian matrices. Using tools from linear algebra we show, that all possible inertia are parametrized by the integer points within the inertia polytope. We present the connection between special matrices and chordal graphs and use it to derive a formula for more efficient computation of inertia. We also implement the algorithms for the computation of the inertia polytope and the inertia of special matrices and present them on numerical examples.

Keywords:Matrix completions, hermitian matrices, matrix inertia, eigenvalues, inertia polytope, chordal graphs, clique trees, perfect elimination ordering

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back