izpis_h1_title_alt

Razvoj sistema za napovedovanje večdimenzionalnih časovnih vrst z nevronskimi mrežami
ID Rupnik, Lenart (Author), ID Vrabič, Rok (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (3,21 MB)
MD5: 1F4552DDA69CE7C386CBEC69EA5AD80E

Abstract
Napovedovanje časovnih vrst opisuje proces analize izbranih časovnih vrst in napovedovanje še neznanih vrednosti na osnovi preteklih podatkov. Pri tem se najpogosteje uporablja metode globokega učenja in s tem povezane nevronske mreže. Namen zaključnega dela je sestaviti enostavno nevronsko mrežo, ki lahko s pomočjo enega ali več vhodnih parametrov napoveduje en izhodni parameter. Za pomoč pri izdelavi in za namene testiranj uporabimo dva podatkovna niza. Prvi opisuje krožno pot avtonomnega robota v dvodimenzionalnem prostoru. S pomočjo tega niza izdelamo osnovno strukturo sistema za napovedovanje in opravimo analizo uporabljenih metod in parametrov. Drugi niz podatkov predstavlja časovni potek vremenskega stanja v okolici Ljubljane. Na podlagi tega niza želimo napovedati dnevni potek temperature. Ob napovedovanju iskanih vrednosti se izkaže, da je bil sistem uspešno izdelan.

Language:Slovenian
Keywords:umetna inteligenca, globoko učenje, nevronske mreže, povratne nevronske mreže, napovedovanje časovnih vrst
Work type:Final paper
Typology:2.11 - Undergraduate Thesis
Organization:FS - Faculty of Mechanical Engineering
Place of publishing:Ljubljana
Publisher:[L. Rupnik]
Year:2022
Number of pages:XIII, 33 f.
PID:20.500.12556/RUL-138242 This link opens in a new window
UDC:004.032.26:004.85(043.2)
COBISS.SI-ID:115303427 This link opens in a new window
Publication date in RUL:13.07.2022
Views:1107
Downloads:85
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Development of a System for Predicting Multidimensional Time Series with Neural Networks
Abstract:
Time series predicting is a process of analysing time series data and predicting unknown values with the help of historical data. The predictions are most often made with deep learning models and neural networks. The goal of this thesis is to build a simple neural network for predicting a single output parameter from one or more input parameters. For aiding the creation process and testing purposes, two types of data are used. The first set represents the time series of coordinates of an autonomous robot in two-dimensional space. This data is mainly used to develop a basic prediction system and for analysing the used parameters and methods. The second set represents the course of yearly weather conditions around Ljubljana. Using this data, we try to predict the daily flow of temperatures. The development of the required system as well as the predictions of all types of data were successful.

Keywords:artificial intelligence, deep learning, neural networks, recurrent neural networks, time series predictions

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back