izpis_h1_title_alt

The use of UAV-acquired multiband images for detecting rockfall-induced injuries at tree crown level
ID Žabota, Barbara (Author), ID Kobal, Milan (Author)

URLURL - Source URL, Visit https://www.mdpi.com/1999-4907/13/7/1039 This link opens in a new window
.pdfPDF - Presentation file, Download (7,81 MB)
MD5: 095E632587E8028BA783E5CFCF29FCD8

Abstract
In this paper, we present an identification of rockfall-injured trees based on multiband images obtained by an unmanned aerial vehicle (UAV). A survey with a multispectral camera was performed on three rockfall sites with versatile tree species (Fagus sylvatica L., Larix decidua Mill., Pinus sylvestris L., Picea abies (L.) Karsten, and Abies alba Mill.) and with different characterizations of rockfalls and rockfall-induced injuries. At one site, rockfall injuries were induced in the same year as the survey. At the second site, they were induced one year after the initial injuries, and at the third site, they were induced six years after the first injuries. At one site, surveys were performed three years in a row. Multiband images were used to extract different vegetation indices (VIs) at the tree crown level and were further studied to see which VIs can identify the injured trees and how successfully. A total of 14 VIs were considered, including individual multispectral bands (green, red, red edge, and near-infrared) by using regression models to differentiate between the injured and uninjured groups for a single year and for three consecutive years. The same model was also used for VI differentiations among the recorded injury groups and size of the injuries. The identification of injured trees based on VIs was possible at the sites where rockfall injuries were induced at least one year before the UAV survey, and they could still be identifiable six years after the initial injuries. At the site where injuries were induced only four months before the UAV survey, the identification of injured trees was not possible. VIs that could explain the largest variability (R2 > 0.3) between injured and uninjured trees were: inverse ratio index (IRVI), green–red vegetation index (GRVI), normalized difference vegetation index (NDVI), normalized ratio index (NRVI), and ratio vegetation index (RVI). RVI was the most successful, explaining 40% of the variance at two sites. R2 values only increased by a few percentages (up to 10%) when the VIs of injured trees were observed over a period of three years and mostly did not change significantly, thus not indicating if the vitality of the trees increased or decreased. Differentiation among the injured groups did not show promising results, while, on the other hand, there was a strong correlation between the VI values (RVI) and the size of the injury according to the basal area of the trees (so-called injury index). Both in the case of broadleaves and conifers at two sites, the R2 achieved a value of 0.82. The presented results indicate that the UAV-acquired multiband images at the tree crown level can be used for surveying rockfall protection forests in order to monitor their vitality, which is crucial for maintaining the protective effect through time and space.

Language:English
Keywords:UAV, multispectral imagery, rockfalls, monitoring, forests, protection function
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:BF - Biotechnical Faculty
Publication status:Published
Publication version:Version of Record
Publication date:01.07.2022
Year:2022
Number of pages:28 str.
Numbering:Vol. 13, iss. 7
PID:20.500.12556/RUL-137872 This link opens in a new window
UDC:630*38+630*58
ISSN on article:1999-4907
DOI:10.3390/f13071039 This link opens in a new window
COBISS.SI-ID:113685763 This link opens in a new window
Publication date in RUL:05.07.2022
Views:813
Downloads:112
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Forests
Shortened title:Forests
Publisher:MDPI
ISSN:1999-4907
COBISS.SI-ID:3872166 This link opens in a new window

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.
Licensing start date:05.07.2022

Secondary language

Language:Slovenian
Keywords:multispektralne slike, skalni podori, monitoring, gozdovi, zaščitna funkcija

Projects

Funder:ARRS - Slovenian Research Agency
Project number:P4-0059-2020
Name:Gozd, gozdarstvo in obnovljivi gozdni viri

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back