izpis_h1_title_alt

Označevanje žilja Willisovega kroga v angiografskih slikah z modeli globokega učenja
ID TASIČ, JAN (Author), ID Špiclin, Žiga (Mentor) More about this mentor... This link opens in a new window, ID Bizjak, Žiga (Comentor)

.pdfPDF - Presentation file, Download (4,69 MB)
MD5: 821F5BC517E1C985FA11A3B70744242F

Abstract
Bolezni možganskega ožilja so drugi najpogostejši vzrok smrti na svetu. Njihovo pravočasno odkrivanje in zdravljenje je ključnega pomena pri uspešnem preprečevanju zdravstvenih zapletov in celo smrti. V tem zaključnem delu smo se osredotočili na anatomsko označevanje možganskih arterij, ki omogoča izločanje presečnih meritev in primerjave med zdravimi in patološkimi oblikami možganskega žilja. Omenjene primerjave omogočajo iskanje geometrijskih faktorjev, ki določanjo tveganje za razvoj in nastanek bolezni žilja. Avtomatizacija postopka označevanja je pomemben korak k večji točnosti, zanesljivosti in hitrosti ter njegovi praktični uporabnosti. Za označevanje arterij Willisovega kroga, ki na primer predstavlja področje največje pojavnosti možganskih anevrizem, smo (re)implementirali in kvantitativno vrednotili postopke 3D globokega učenja kot so PointNet, PointNet++, DGCNN in HodgeNet. V primerjavi z drugimi uveljavljenihmi postopki označevanja Willisovega kroga so omenjeni postopki zelo računsko učinkoviti, saj ne potrebujejo predhodne predobdelave vhodnih slik; le-ta običajno vključuje ročne popravke izločenega žilja in je zato časovno zahtevna. Za namene preizkušanja smo pripravili zbirko 165 ročno označenih arterij Willisovega kroga, pridobljenih iz štirih podatkovnih baz magnetno resonančnih angiografskih (MRA) slik intrakranialnega žilja. Vrednotenje delovanja postopkov označevanja smo izvedli na več oblikah vhodne informacije, na primer na točkovnih koordinatah, preizkušali smo tudi učinek dodatnih značilnic, kot so sivinske vrednosti vokslov. Postopki 3D globokega učenja so dosegali točnost označevanja med 85 in 95 \% Diceovega koeficienta (postopek PointNet++), kar je primerljivo z večino obstoječih metod, medtem ko je proces označevanja posamezne angiografske slike povprečno trajal le nekaj sekund. Dodatne značilnice pri učenju so v povprečju izboljšale rezultat za 3 \%. Rezultati so pokazali konkurenčnost postopkov 3D globokega učenja in velik potencial za praktično uporabo.

Language:Slovenian
Keywords:avtomatsko označevanje intrakranialnega žilja, globoko učenje, Willisov krog, kvantitativno vrednotenje
Work type:Master's thesis/paper
Organization:FE - Faculty of Electrical Engineering
Year:2022
PID:20.500.12556/RUL-137854 This link opens in a new window
COBISS.SI-ID:113884931 This link opens in a new window
Publication date in RUL:04.07.2022
Views:879
Downloads:86
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Willis circle vessel labeling in angiographic scans using deep learning models
Abstract:
Cerebrovascular diseases are second most common cause of death, therefore their early diagnosis and treatment are crucial for preventing adverse health events or even death. In this work, we focused on anatomical labeling of cerebral arteries that enables their cross-sectional quantification and inter-subject comparisons, e.g. healthy versus pathological. Such comparisons are the basis to identify geometric risk factors correlated to the cerebrovascular diseases. Automation of anatomical labeling is an important step towards higher accuracy, reliability and efficiency of the labeling process and is needed for its practical implementation. We (re)implemented and evaluated four 3D deep learning methods to label the main arteries comprising the Circle of Willis, e.g. the region with the highest incidence of cerebral aneurysms. The four tested methods were PointNet, PointNet++, DGCNN and HodgeNet. In comparison with existing Circle of Willis labeling methods, the tested deep learning methods were very efficient as they did not require image preprocessing in form of vessel extraction, a process than generally involves manual corrections. For test and evaluation purposes, we used 165 intracranial magnetic resonance angiography (MRA) images, in which we manually labeled the Circle of Willis arteries. In addition we tested and evaluated the impact of additional features, for example the MRA signal intensity, on the results of labeling. The 3D deep learning methods achieved accuracy between 85 and 95 \% in terms of Dice overlap (PointNet++), which was comparable to the results of most existing methods, while the labeling process took only couple of seconds on average. The use of additional features improved the labeling results for 3\%. The results show great potential of the 3D deep learning methods for carrying out the anatomical labeling task in a practical setting.

Keywords:automatic intracranial vessel labeling, deep learning, circle of Willis, quantitative evaluation

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back