izpis_h1_title_alt

Upravljanje distribucijskega omrežja z globokim spodbujevanim učenjem : magistrsko delo
ID Dobravec, Blaž (Author), ID Žabkar, Jure (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (23,26 MB)
MD5: 5AD6AB88D2228F3ECD645C6113627733

Abstract
Na področju distribucijskih elektroenergetskih sistemov prihaja do velikih sprememb. V omrežje se priključuje veliko število sončnih elektrarn, poteka intenzivna elektrifikacija prometa, obenem pa raste poraba uporabnikov omrežja. Vsi ti novi elementi v omrežju povzročajo večjo spremenljivost porabe ter proizvodnje in s tem povezane težave s kakovostjo oskrbe končnim odjemalcem z električno energijo. Za potrebe zagotavljanja kakovostne oskrbe z električno energijo so se v preteklosti posluževali predvsem ojačanja omrežja, kar predstavlja visoko stopnjo financiranja. V magistrski nalogi raziščemo možnosti in prednosti uporabe metod globokega spodbujevanega učenja za uravnavanje napetosti v nizkonapetostnem distribucijskem omrežju, ki je alternativa ojačanju omrežja. Analiziramo dve najsodobnejši arhitekturi globokega spodbujevanega učenja; za učenje strategije implementiramo agenta globokega spodbujevanega učenja, ki se na podlagi učne množice zgodovinskih podatkov prejema in oddaje električne energije v simulacijskem okolju uči strategije upravljanja napetosti v realnem nizkonapetostnem distribucijskem omrežju. Naučene modele testiramo na ločeni testni množici realnih podatkov in predstavimo rezultate.

Language:Slovenian
Keywords:globoko spodbujevano učenje, strojno učenje, uravnavanje napetosti
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
FRI - Faculty of Computer and Information Science
Year:2022
PID:20.500.12556/RUL-137836 This link opens in a new window
UDC:004.42
COBISS.SI-ID:113737731 This link opens in a new window
Publication date in RUL:02.07.2022
Views:909
Downloads:160
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Deep reinforcement learning for voltage control in distribution networks
Abstract:
Electricity distribution system is at the forefront of major changes in terms of electrification, especially in mobility and heating. A large number of distributed energy resources are being connected to the distribution network, intensive electrification of mobility is taking place, all while household consumption continues to rise. All these new elements in the network are causing problems with power quality. Traditionally, in order to provide sufficient quality of electricity supply, network reinforcements were made. Our goal is to explore possible benefits of using deep reinforcement learning algorithms in order to mitigate over/under voltage problems compared to traditional network reinforcement approach. This work focuses on two state-of-the-art architectures of deep reinforcement learning. In order to find efficient control strategies, we implemented a deep reinforcement learning agent that, based on the training dataset of actual historical electricity consumption and production data, learns voltage control strategy in an actual low voltage distribution network. Learned models were also tested on an independent test dataset.

Keywords:deep reinforcement learning, machine learning, voltage control

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back