Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Degenerate fractional Kirchhoff-type system with magnetic fields and upper critical growth
ID
Sun, Mingzhe
(
Author
),
ID
Shi, Shaoyun
(
Author
),
ID
Repovš, Dušan
(
Author
)
PDF - Presentation file,
Download
(459,70 KB)
MD5: A92194D8932F25A1134588843604755B
URL - Source URL, Visit
https://link.springer.com/article/10.1007/s00009-022-02076-5
Image galllery
Abstract
This paper deals with the following degenerate fractional Kirchhoff-type system with magnetic fields and critical growth: ▫$$\begin{aligned} \left\{ \begin{array}{lll} -\mathfrak{M}(\Vert u\Vert _{s,A}^2)[(-\Delta )^s_Au+u] = G_u(|x|,|u|^2,|v|^2) \\ \quad +\left( \mathcal{I}_\mu *|u|^{p^*}\right) |u|^{p^*-2}u \ &{}\text{ in }\,\,\mathbb {R}^N,\\ \mathfrak{M}(\Vert v\Vert _{s,A})[(-\Delta )^s_Av+v] = G_v(|x|,|u|^2,|v|^2) \\ \quad +\left( \mathcal{I}_\mu *|v|^{p^*}\right) |v|^{p^*-2}v \ &{}\text{ in }\,\,\mathbb{R}^N, \end{array}\right. \end{aligned}$$▫ where ▫$$\begin{aligned}\Vert u\Vert _{s,A}=\left( \iint _{\mathbb{R}^{2N}}\frac{|u(x)-e^{i(x-y)\cdot A(\frac{x+y}{2})}u(y)|^2}{|x-y|^{N+2s}}{\text{d}}x {\text{d}}y+\int _{\mathbb{R}^N}|u|^2{\text {d}}x\right) ^{1/2},\end{aligned}$$▫ and ▫$(-\Delta )_{A}^s$▫ and ▫$A$▫ are called magnetic operator and magnetic potential, respectively, ▫$\mathfrak{M}: \mathbb{R}^{+}_{0}\rightarrow \mathbb{R}^{+}_0$▫ is a continuous Kirchhoff function, ▫$\mathcal{I}_\mu (x) = |x|^{N-\mu }$▫ with ▫$0<\mu <N$▫-function ▫$G$▫ satisfies some suitable conditions, and ▫$p^* =\frac{N+\mu }{N-2s}$▫. We prove the multiplicity results for this problem using the limit index theory. The novelty of our work is the appearance of convolution terms and critical nonlinearities. To overcome the difficulty caused by degenerate Kirchhoff function and critical nonlinearity, we introduce several analytical tools and the fractional version concentration-compactness principles which are useful tools for proving the compactness condition.
Language:
English
Keywords:
fractional Kirchhoff-type system
,
upper critical exponent
,
concentration-compactness principle
,
variational method
,
multiple solutions
Work type:
Article
Typology:
1.01 - Original Scientific Article
Organization:
PEF - Faculty of Education
FMF - Faculty of Mathematics and Physics
Publication version:
Author Accepted Manuscript
Publication date:
01.08.2022
Year:
2022
Number of pages:
23 str.
Numbering:
Vol. 19, iss. 4, art. 170
PID:
20.500.12556/RUL-137708
UDC:
517.956
ISSN on article:
1660-5446
DOI:
10.1007/s00009-022-02076-5
COBISS.SI-ID:
112532995
Publication date in RUL:
29.06.2022
Views:
1186
Downloads:
74
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Record is a part of a journal
Title:
Mediterranean journal of mathematics
Shortened title:
Mediterr. j. math.
Publisher:
Springer Nature, University of Bari, Department of Mathematics
ISSN:
1660-5446
COBISS.SI-ID:
13561433
Projects
Funder:
Other - Other funder or multiple funders
Project number:
11771177
Funder:
Other - Other funder or multiple funders
Project number:
U1664257
Funder:
Other - Other funder or multiple funders
Project number:
2017TD-20
Funder:
ARRS - Slovenian Research Agency
Project number:
P1-0292
Name:
Topologija in njena uporaba
Funder:
ARRS - Slovenian Research Agency
Project number:
N1-0114
Name:
Algebrajski odtisi geometrijskih značilnosti v homologiji
Funder:
ARRS - Slovenian Research Agency
Project number:
N1-0083
Name:
Forsing, fuzija in kombinatorika odprtih pokritij
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back