izpis_h1_title_alt

Degenerate fractional Kirchhoff-type system with magnetic fields and upper critical growth
ID Sun, Mingzhe (Author), ID Shi, Shaoyun (Author), ID Repovš, Dušan (Author)

.pdfPDF - Presentation file, Download (459,70 KB)
MD5: A92194D8932F25A1134588843604755B
URLURL - Source URL, Visit https://link.springer.com/article/10.1007/s00009-022-02076-5 This link opens in a new window

Abstract
This paper deals with the following degenerate fractional Kirchhoff-type system with magnetic fields and critical growth: ▫$$\begin{aligned} \left\{ \begin{array}{lll} -\mathfrak{M}(\Vert u\Vert _{s,A}^2)[(-\Delta )^s_Au+u] = G_u(|x|,|u|^2,|v|^2) \\ \quad +\left( \mathcal{I}_\mu *|u|^{p^*}\right) |u|^{p^*-2}u \ &{}\text{ in }\,\,\mathbb {R}^N,\\ \mathfrak{M}(\Vert v\Vert _{s,A})[(-\Delta )^s_Av+v] = G_v(|x|,|u|^2,|v|^2) \\ \quad +\left( \mathcal{I}_\mu *|v|^{p^*}\right) |v|^{p^*-2}v \ &{}\text{ in }\,\,\mathbb{R}^N, \end{array}\right. \end{aligned}$$▫ where ▫$$\begin{aligned}\Vert u\Vert _{s,A}=\left( \iint _{\mathbb{R}^{2N}}\frac{|u(x)-e^{i(x-y)\cdot A(\frac{x+y}{2})}u(y)|^2}{|x-y|^{N+2s}}{\text{d}}x {\text{d}}y+\int _{\mathbb{R}^N}|u|^2{\text {d}}x\right) ^{1/2},\end{aligned}$$▫ and ▫$(-\Delta )_{A}^s$▫ and ▫$A$▫ are called magnetic operator and magnetic potential, respectively, ▫$\mathfrak{M}: \mathbb{R}^{+}_{0}\rightarrow \mathbb{R}^{+}_0$▫ is a continuous Kirchhoff function, ▫$\mathcal{I}_\mu (x) = |x|^{N-\mu }$▫ with ▫$0<\mu <N$▫-function ▫$G$▫ satisfies some suitable conditions, and ▫$p^* =\frac{N+\mu }{N-2s}$▫. We prove the multiplicity results for this problem using the limit index theory. The novelty of our work is the appearance of convolution terms and critical nonlinearities. To overcome the difficulty caused by degenerate Kirchhoff function and critical nonlinearity, we introduce several analytical tools and the fractional version concentration-compactness principles which are useful tools for proving the compactness condition.

Language:English
Keywords:fractional Kirchhoff-type system, upper critical exponent, concentration-compactness principle, variational method, multiple solutions
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:PEF - Faculty of Education
FMF - Faculty of Mathematics and Physics
Publication version:Author Accepted Manuscript
Publication date:01.08.2022
Year:2022
Number of pages:23 str.
Numbering:Vol. 19, iss. 4, art. 170
PID:20.500.12556/RUL-137708 This link opens in a new window
UDC:517.956
ISSN on article:1660-5446
DOI:10.1007/s00009-022-02076-5 This link opens in a new window
COBISS.SI-ID:112532995 This link opens in a new window
Publication date in RUL:29.06.2022
Views:1186
Downloads:74
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Mediterranean journal of mathematics
Shortened title:Mediterr. j. math.
Publisher:Springer Nature, University of Bari, Department of Mathematics
ISSN:1660-5446
COBISS.SI-ID:13561433 This link opens in a new window

Projects

Funder:Other - Other funder or multiple funders
Project number:11771177

Funder:Other - Other funder or multiple funders
Project number:U1664257

Funder:Other - Other funder or multiple funders
Project number:2017TD-20

Funder:ARRS - Slovenian Research Agency
Project number:P1-0292
Name:Topologija in njena uporaba

Funder:ARRS - Slovenian Research Agency
Project number:N1-0114
Name:Algebrajski odtisi geometrijskih značilnosti v homologiji

Funder:ARRS - Slovenian Research Agency
Project number:N1-0083
Name:Forsing, fuzija in kombinatorika odprtih pokritij

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back