Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Strojni vid za spremljanje kakovosti montaže izdelka Raspberry Pi
ID
Fleten, Matic
(
Author
),
ID
Šimic, Marko
(
Mentor
)
More about this mentor...
,
ID
Herakovič, Niko
(
Comentor
)
PDF - Presentation file,
Download
(3,36 MB)
MD5: DDCE954F39C5DF049DF12A9DEAD551AC
Image galllery
Abstract
Spremljanje kakovosti montaže izdelkov je pomemben, a za človeka zamuden proces. V dobi industrije 4.0, kjer stremimo k čim višji stopnji avtomatizacije, je pomembno, da tudi kakovost montaže lahko spremljamo ob človeški odsotnosti. Za ta namen potrebujemo merilni sistem za preverjanje kakovosti in ustreznosti sestava izdelka Raspberry Pi, ki ga na proizvodni liniji sestavlja robot. V okviru naloge smo zato zasnovali sistem strojnega vida, ki omogoča zaznavo posameznih sestavnih delov in podsestavov izbranega izdelka Raspberry Pi. Posebej smo se osredotočili na algoritem zaznavanja sestavnih delov in podsestava, ki deluje na principu barvnih karakteristik sestavnih delov in sestavljanja slik referenčnega izdelka. Referenčno sliko podsestavov in izdelka uporabimo za primerjavo realnih slik posnetih za posamezne montažne operacije za realen podsestav in izdelek. Algoritem slike analizira, ovrednoti in poda rezultat ustreznosti sestava. Izdelal se je prototip sistema strojnega vida, podani so ključni parametri in nastavitve kamere, osvetlitve in merilnega mesta. V eksperimentalnem delu smo analizirali in preverili merilne metode in algoritem.
Language:
Slovenian
Keywords:
strojni vid
,
kontrola kakovosti
,
montaža
,
digitalna obdelava slik
,
binarizacija
,
morfologija
Work type:
Final paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FS - Faculty of Mechanical Engineering
Place of publishing:
Ljubljana
Publisher:
[M. Fleten]
Year:
2022
Number of pages:
XV, 42 f.
PID:
20.500.12556/RUL-136306
UDC:
681.5:004.9(043.2)
COBISS.SI-ID:
105890819
Publication date in RUL:
23.04.2022
Views:
1433
Downloads:
268
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
FLETEN, Matic, 2022,
Strojni vid za spremljanje kakovosti montaže izdelka Raspberry Pi
[online]. Bachelor’s thesis. Ljubljana : M. Fleten. [Accessed 29 March 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=136306
Copy citation
Share:
Secondary language
Language:
English
Title:
Machine vision system for assembly quality control of Raspberry Pi product
Abstract:
Quality control is an important but time-consuming process. In the age of Industry 4.0, where we strive for the highest possible level of automation, it is important that the quality of the assembly can be monitored in the absence of humans. To this end, we need a measurement system that allows us to check the quality and suitability of the assembly of the Raspberry Pi product, which is assembled by a robot in the production line. Therefore, as part of this task, we have developed a machine vision system that allows the detection of individual components and subassemblies of the selected Raspberry Pi product. In particular, we focused on the component and subassembly recognition algorithm based on the principle of component color features and compilation of images of the reference product. Reference images of subassemblies and assemblies are used as a template for comparison with real-time images of assembly operations of an actual product and its subassemblies. The image algorithm analyzes, evaluates and provides the result of the adequacy of the assembly. A prototype of the machine vision system was made, and the main parameters and settings of the camera, lighting, and measuring point are given. In the experimental part we analyzed and tested the measurement methods and the algorithm.
Keywords:
machine vision
,
quality control
,
assembly
,
digital image processing
,
thresholding
,
morphology
Similar documents
Similar works from RUL:
Plasma extracellular vesicle characteristics correlate with tumor differentiation and predict overall survival in patients with pancreatic ductal adenocarcinoma undergoing surgery with curative intent
Kliničen pomen določanja kromogranina A pri karcinoidnih tumorjih
Klinični pomen določanja tumorskih označevalcev CEA in CA 19-9 pri raku trebušne slinavke
Intelektualni kapital in razvoj managementa človeškega kapitala v odvisnosti od ugleda podjetja
Merjenje vžigne napetosti plinskega odvodnika v odvisnosti od temperature
Similar works from other Slovenian collections:
Rak trebušne slinavke
Rak trebušne slinavke
Rak trebušne slinavke
Rak trebušne slinavke
Kemoterapija raka trebušne slinavke
Back