izpis_h1_title_alt

Uporaba podatkovnega rudarjenja za analizo jeklarskih procesov : diplomsko delo
ID Flisek, Neža (Author), ID Knap, Matjaž (Mentor) More about this mentor... This link opens in a new window, ID Bradaškja, Boštjan (Comentor)

.pdfPDF - Presentation file, Download (3,66 MB)
MD5: A15637AA74CECC4352E53BB99B5AD4FC

Abstract
V diplomskem delu smo analizirali podatke jeklarskega procesa izdelave titanovih jekel s programom Orange. Naredili smo analize šarž s posameznimi napakami glede na dodeljene podatke o postopku izdelave. Prva podatkovna baza uporablja podatke o izdelavi v EOP, druga podatkovna baza pa uporablja podatke o izdelavi s postopki sekundarne metalurgije. Šarže smo primerjali po skupinah napak in po posameznih napakah, analizirali pa smo tudi vplivne parametre za nastanek napake. Pri analizi smo uporabili podatkovne modele, in sicer nevronske mreže, odločitveno drevo in model AdaBoost. Z dobljenimi rezultati smo izdelali grafe violinske razporeditve, stolpčne diagrame, drevesne prikaze in matrike zmede. Primerjali smo natančnost napovedi med posameznimi podatkovnimi modeli.

Language:Slovenian
Keywords:podatkovno rudarjenje, odločitveno drevo, nevronske mreže, AdaBoost, Orange
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:NTF - Faculty of Natural Sciences and Engineering
Place of publishing:Ljubljana
Publisher:[N. Flisek]
Year:2022
Number of pages:XII, 55 f.
PID:20.500.12556/RUL-136037 This link opens in a new window
UDC:669
COBISS.SI-ID:105554947 This link opens in a new window
Publication date in RUL:08.04.2022
Views:1054
Downloads:110
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Use of data mining for analysis of steelmaking processes : diploma work
Abstract:
In the diploma work, we analysed the data of the steel process of titanium steel production with the program Orange. We performed batch analyses with individual errors according to the assigned data on the manufacturing process. The first database was attributed production data in the EAF, with secondary metallurgy processes and continuous casting, and the second database was attributed production data with secondary metallurgy processes and continuous casting. The batches were compared by groups of errors and by individual errors, and the influential parameters for the occurrence of the error were also analysed. Data models were used in the analysis, namely neural networks, decision tree and AdaBoost model. With the obtained results, we produced graphs of violin arrangement, bar charts, tree representations and confusion matrices. We compared the accuracy of the forecast between individual data models.

Keywords:data mining, decision tree, neural networks, AdaBoost, Orange

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back