Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Globoke nevronske mreže za semantično segmentacijo za navidezna ozadja
ID
TRATNIK, AMADEJ
(
Author
),
ID
Čehovin Zajc, Luka
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(11,91 MB)
MD5: 989D4EB4581210C6770C9B724045CC8A
Image galllery
Abstract
Zaznavanje objektov na slikah je aktualna tematika v industriji in raziskovanju, saj omogoča avtomatsko prepoznavanje posameznega objekta na sliki, pogosto hitreje in točneje od človeškega očesa. S porastom globokih nevronskih mrež je še posebej zanimivo področje semantične segmentacije, ki omogoča ekstrakcijo informacije do ravni posameznih slikovnih elementov. V okviru diplomske naloge smo se posvetili problemu prepoznavanja osebe v videu in zamenjave ozadja s poljubno vsebino. Zasnovali smo primerno točno in raznoliko podatkovno množico oseb in njihovih binarnih mask, implementirali in naučili dve konvolucijski nevronski mreži segmentacije, Fast-SCNN in UNet, ju primerjali in analizirali rezultate. Arhitekturo Fast-SCNN smo še dodatno optimizirali z orodjem ONNX Runtime, namenjenim produkciji, in ji omogočili izvajanje na CPE v realnem času. S primerno anotirano množico za učenje in optimizirano različico nevronske mreže Fast-SCNN smo dosegli v povprečju 27 sličic na sekundo pri prepoznavanju osebe v videu ter 29 sličic na sekundo pri prepoznavanju osebe v realnem času preko spletne kamere.
Language:
Slovenian
Keywords:
semantična segmentacija
,
globoko učenje
,
računalniški vid
Work type:
Bachelor thesis/paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FRI - Faculty of Computer and Information Science
Year:
2022
PID:
20.500.12556/RUL-135746
COBISS.SI-ID:
104184067
Publication date in RUL:
30.03.2022
Views:
1560
Downloads:
191
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
TRATNIK, AMADEJ, 2022,
Globoke nevronske mreže za semantično segmentacijo za navidezna ozadja
[online]. Bachelor’s thesis. [Accessed 1 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=135746
Copy citation
Share:
Secondary language
Language:
English
Title:
Virtual backgrounds as semantic segmentation using deep neural networks
Abstract:
Object detection is a current topic in industry and research. It enables automatic identification of an individual objects in an image, which is often faster and more accurate than that of the human eye. With the rise of deep neural networks, the process of semantic segmentation is particularly interesting, as it allows the extraction of information from an image on pixel level. As part of the BA thesis, we addressed the issue of identifying a person in a video and replacing their background with any given content. We designed a diverse and accurate set of data subjects and their binary masks, implemented and trained two convolutional neural networks for semantic segmentation, Fast-SCNN and UNet. We then compared the two networks and analyzed the results. The Fast-SCNN network was further optimized with ONNX Runtime to enable real-time execution on the CPU. On an appropriately annotated dataset combined with an optimized version of the Fast-SCNN neural network, we achieved an average of 27 FPS in videos and 29 FPS in real-time webcam segmentation.
Keywords:
semantic segmentation
,
deep learning
,
computer vision
Similar documents
Similar works from RUL:
Pametna regulacija ogrevanja sanitarne vode s sončnimi kolektorji
Digitalizacija in avtomatizacija vrta
Domači alarmni sistem
Pametni termostat za centralno ogrevanje
Avtomatizirano upravljanje svetil v domačem okolju
Similar works from other Slovenian collections:
Implementacija računalniških iger, obogatenih z internetom stvari na platformi Raspberry Pi
Pametni zvonec
Informacijski sistem za pametni vrt
Informacijski sistem za upravljanje rastlinjaka
Pametna avtomatizacija vstopa v dom na osnovi interneta stvari z uporabo Raspberry Pi
Back