Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Primerjava algoritmov spodbujevalnega učenja na simulaciji parkiranja avtomobila
ID
KRIŽMAN, KRISTJAN
(
Author
),
ID
Žabkar, Jure
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(5,72 MB)
MD5: BE8C06793EFA775B092D0A6F70ED6BDB
Image galllery
Abstract
Primerjajte algoritma spodbujevanega učenja DQN in DDPG v danem simulacijskem okolju za parkiranje avtomobila. Znotraj omejitev simulatorja lahko spreminjate opise stanj in akcij tako, da bodo primerni za dana algoritma. Uporabite lahko obstoječe implementacije algoritmov ali razvijete svoje. Poročajte o uspešnosti obeh algoritmov, časovni zahtevnosti in njuni občutljivosti na začetne parametre.
Language:
Slovenian
Keywords:
računalnik
,
strojno učenje
,
simulacija
,
igra
,
avtomobil
,
učenje
Work type:
Bachelor thesis/paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FRI - Faculty of Computer and Information Science
Year:
2022
PID:
20.500.12556/RUL-135581
COBISS.SI-ID:
102689027
Publication date in RUL:
21.03.2022
Views:
1325
Downloads:
101
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
KRIŽMAN, KRISTJAN, 2022,
Primerjava algoritmov spodbujevalnega učenja na simulaciji parkiranja avtomobila
[online]. Bachelor’s thesis. [Accessed 19 May 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=135581
Copy citation
Share:
Secondary language
Language:
English
Title:
Comparison of two reinforcement learning algorithms in a car parking simulator
Abstract:
Compare the DQN and DDPG reinforcement learning algorithms in a given car parking simulation environment. You may change the descriptions of states and actions within the limits of the simulator, to suit the given algorithm. Use existing implementations or develop your own. Report on the performance of both algorithms, their time complexity and their sensitivity to initial parameters.
Keywords:
computer
,
machine learning
,
simulation
,
game
,
car
,
učenje
Similar documents
Similar works from RUL:
Searching for similar works...
Similar works from other Slovenian collections:
Back