Loading [MathJax]/jax/output/HTML-CSS/jax.js
Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Manjkajoči obseg : delo diplomskega seminarja
ID
Sajovic, Luka
(
Author
),
ID
Dolžan, David
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(472,64 KB)
MD5: 2ADF1BDB0B2E27A83B37D66617D67D09
Image galllery
Abstract
Za kolobar
R
definiramo komutirajoči graf
Γ
(
R
)
kot graf, v katerem so vozlišča necentralni elementi kolobarja
R
, dve vozlišči pa sta povezani natanko tedaj, ko pripadajoča elementa komutirata v
R
. Pokažemo, da je za kolobarje matrik nad poljem in
n
≥
3
, komutirajoči graf
Γ
(
M
n
(
F
)
)
povezan natanko tedaj, ko ima vsaka
F
-razširitev stopnje
n
pravo vmesno polje. Nadalje pokažemo, da je
Γ
(
M
n
(
Q
)
)
nepovezan
n
≥
2
. Dokažemo, da če je
Γ
(
M
n
(
F
)
)
)
povezan, potem je njegov premer vsaj 4 in največ 6. Poiščemo nekaj primerov komutirajočih grafov s premerom 4. Dokažemo še, da če je
F
končno polje in
n
ni praštevilo ali kvadrat praštevila, je
d
i
a
m
Γ
(
M
n
(
F
)
)
≤
5
.
Language:
Slovenian
Keywords:
komutirajoči graf
,
linearna algebra
,
matrika
,
Galoisova teorija
Work type:
Final seminar paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FMF - Faculty of Mathematics and Physics
Year:
2022
PID:
20.500.12556/RUL-135507
UDC:
512
COBISS.SI-ID:
101306115
Publication date in RUL:
17.03.2022
Views:
1700
Downloads:
80
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
SAJOVIC, Luka, 2022,
Manjkajoči obseg : delo diplomskega seminarja
[online]. Bachelor’s thesis. [Accessed 2 June 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=135507
Copy citation
Share:
Secondary language
Language:
English
Title:
The missing field
Abstract:
We define the commuting graph of ring
R
as the graph
Γ
(
R
)
in which vertices are non-central elements of ring
R
. Two vertices are adjacent if and only if the corresponding elements commute in
R
. We show that for the ring of matrices over a field where
n
≥
3
the commuting graph
Γ
(
M
n
(
F
)
)
is connected if and only if for every
F
-extension of degree
n
exists a proper intermediate field. We also show that
Γ
(
M
n
(
Q
)
)
is not connected for
n
≥
2
. We prove that if
Γ
(
M
n
(
F
)
)
is connected then
4
≤
d
i
a
m
Γ
(
M
n
(
F
)
)
≤
6
. We find some examples of commuting graphs with diameter 4. We also prove that
d
i
a
m
Γ
(
M
n
(
F
)
)
≤
5
if
F
is a finite field and
n
is not a prime nor square of a prime.
Keywords:
commuting graph
,
linear algebra
,
matrix
,
Galois theory
Similar documents
Similar works from RUL:
Searching for similar works...
Similar works from other Slovenian collections:
Back