Details

Manjkajoči obseg : delo diplomskega seminarja
ID Sajovic, Luka (Author), ID Dolžan, David (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (472,64 KB)
MD5: 2ADF1BDB0B2E27A83B37D66617D67D09

Abstract
Za kolobar R definiramo komutirajoči graf Γ(R) kot graf, v katerem so vozlišča necentralni elementi kolobarja R, dve vozlišči pa sta povezani natanko tedaj, ko pripadajoča elementa komutirata v R. Pokažemo, da je za kolobarje matrik nad poljem in n3, komutirajoči graf Γ(Mn(F)) povezan natanko tedaj, ko ima vsaka F-razširitev stopnje n pravo vmesno polje. Nadalje pokažemo, da je Γ(Mn(Q)) nepovezan n2. Dokažemo, da če je Γ(Mn(F))) povezan, potem je njegov premer vsaj 4 in največ 6. Poiščemo nekaj primerov komutirajočih grafov s premerom 4. Dokažemo še, da če je F končno polje in n ni praštevilo ali kvadrat praštevila, je diamΓ(Mn(F))5.

Language:Slovenian
Keywords:komutirajoči graf, linearna algebra, matrika, Galoisova teorija
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2022
PID:20.500.12556/RUL-135507 This link opens in a new window
UDC:512
COBISS.SI-ID:101306115 This link opens in a new window
Publication date in RUL:17.03.2022
Views:1696
Downloads:80
Metadata:XML DC-XML DC-RDF
:
SAJOVIC, Luka, 2022, Manjkajoči obseg : delo diplomskega seminarja [online]. Bachelor’s thesis. [Accessed 2 June 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=135507
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:The missing field
Abstract:
We define the commuting graph of ring R as the graph Γ(R) in which vertices are non-central elements of ring R. Two vertices are adjacent if and only if the corresponding elements commute in R. We show that for the ring of matrices over a field where n3 the commuting graph Γ(Mn(F)) is connected if and only if for every F-extension of degree n exists a proper intermediate field. We also show that Γ(Mn(Q)) is not connected for n2. We prove that if Γ(Mn(F)) is connected then 4diamΓ(Mn(F))6. We find some examples of commuting graphs with diameter 4. We also prove that diamΓ(Mn(F))5 if F is a finite field and n is not a prime nor square of a prime.

Keywords:commuting graph, linear algebra, matrix, Galois theory

Similar documents

Similar works from RUL:No similar works found
Similar works from other Slovenian collections:No similar works found

Back