Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Obratne stohastične diferencialne enačbe : magistrsko delo
ID
Leskovšek Kunc, Anja
(
Author
),
ID
Perman, Mihael
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(730,26 KB)
MD5: 21F89CAF280885796C6EC4C93798FFD9
Image galllery
Abstract
Obratne stohastične diferencialne enačbe so poseben tip stohastičnih diferencialnih enačb, pri katerih imamo dano končno vrednost, ki se uporabljajo v finančnih modelih, ekonomskih problemih, stohastični kontroli, stohastičnih diferencialnih igrah itd. V tem delu si bomo pogledali, pod katerimi pogoji obstaja enolična rešitev za obratne stohastične diferencialne enačbe in nekaj primerov iz financ. Nato bomo definirali stohastično kontrolo ter dve glavni metodi, s katerima jo lahko rešujemo: dinamično programiranje ter Pontrjaginov stohastični princip maksimuma. Na koncu si bomo pogledali povezavo med obratnimi stohastičnimi diferencialnimi enačbami in stohastično kontrolo.
Language:
Slovenian
Keywords:
obratne stohastične diferencialne enačbe
,
stohastična kontrola
,
Hamiltonian sistema
,
dinamično programiranje
,
Pontrjaginov stohastični princip maksimuma.
Work type:
Master's thesis/paper
Typology:
2.09 - Master's Thesis
Organization:
FMF - Faculty of Mathematics and Physics
Year:
2022
PID:
20.500.12556/RUL-135068
UDC:
519.2
COBISS.SI-ID:
98100483
Publication date in RUL:
19.02.2022
Views:
1789
Downloads:
160
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
LESKOVŠEK KUNC, Anja, 2022,
Obratne stohastične diferencialne enačbe : magistrsko delo
[online]. Master’s thesis. [Accessed 6 July 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=135068
Copy citation
Share:
Secondary language
Language:
English
Title:
Backward stochastic differential equations
Abstract:
Backward stochastic differential equations are a special type of stochastic differential equations, in which the terminal value is already given, that are used in financial models, economic problems, stochastic control, stochastic differential games, etc. In this thesis we are going to look at the conditions under which there is a unique solution for the backward stochastic differential equations and some examples from finance. Then we will define stochastic control and two main methods with which we can solve it. These methods are dynamic programming and Pontryagin stochastic maximum principle. At the end, we will take a look at the connection between backward stochastic differential equations and stochastic control.
Keywords:
backward stochastic differential equations
,
stochastic control
,
the Hamiltonian of the system
,
dynamic programming
,
Pontryagin stochastic maximum principle.
Similar documents
Similar works from RUL:
No similar works found
Similar works from other Slovenian collections:
Back