izpis_h1_title_alt

Obratne stohastične diferencialne enačbe : magistrsko delo
ID Leskovšek Kunc, Anja (Author), ID Perman, Mihael (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (730,26 KB)
MD5: 21F89CAF280885796C6EC4C93798FFD9

Abstract
Obratne stohastične diferencialne enačbe so poseben tip stohastičnih diferencialnih enačb, pri katerih imamo dano končno vrednost, ki se uporabljajo v finančnih modelih, ekonomskih problemih, stohastični kontroli, stohastičnih diferencialnih igrah itd. V tem delu si bomo pogledali, pod katerimi pogoji obstaja enolična rešitev za obratne stohastične diferencialne enačbe in nekaj primerov iz financ. Nato bomo definirali stohastično kontrolo ter dve glavni metodi, s katerima jo lahko rešujemo: dinamično programiranje ter Pontrjaginov stohastični princip maksimuma. Na koncu si bomo pogledali povezavo med obratnimi stohastičnimi diferencialnimi enačbami in stohastično kontrolo.

Language:Slovenian
Keywords:obratne stohastične diferencialne enačbe, stohastična kontrola, Hamiltonian sistema, dinamično programiranje, Pontrjaginov stohastični princip maksimuma.
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2022
PID:20.500.12556/RUL-135068 This link opens in a new window
UDC:519.2
COBISS.SI-ID:98100483 This link opens in a new window
Publication date in RUL:19.02.2022
Views:1453
Downloads:138
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Backward stochastic differential equations
Abstract:
Backward stochastic differential equations are a special type of stochastic differential equations, in which the terminal value is already given, that are used in financial models, economic problems, stochastic control, stochastic differential games, etc. In this thesis we are going to look at the conditions under which there is a unique solution for the backward stochastic differential equations and some examples from finance. Then we will define stochastic control and two main methods with which we can solve it. These methods are dynamic programming and Pontryagin stochastic maximum principle. At the end, we will take a look at the connection between backward stochastic differential equations and stochastic control.

Keywords:backward stochastic differential equations, stochastic control, the Hamiltonian of the system, dynamic programming, Pontryagin stochastic maximum principle.

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back