izpis_h1_title_alt

Modeliranje obratovanja transformatorskih postaj z metodami strojnega učenja
ID ČUŠ, TIBOR (Author), ID Curk, Tomaž (Mentor) More about this mentor... This link opens in a new window, ID Savinek, Maja (Comentor)

.pdfPDF - Presentation file, Download (1,16 MB)
MD5: 9E62FBA915CD94144A4BC961A1D7D9C7

Abstract
V diplomskem delu analiziramo in modeliramo toplotne in elektriˇcne obre- menitve transformatorskih postaj s pomoˇcjo strojnega uˇcenja in numeriˇcnih metod. Transformatorske postaje so kljuˇcen element elektroenergetskega sis- tema, ki povezuje vire energije s konˇcnimi uporabniki. Zaradi vedno veˇcjega ˇstevila preobremenitev omenjenih postaj smo v diplomskem delu analizirali in modelirali njihove elektriˇcne in toplotne obremenitve. V ta namen so bile transformatorske postaje opremljene z dodatnimi temperaturnimi senzorji, ki so skupaj z vremenskimi podatki in podatki o porabi elektriˇcne energije tvorili naˇso podatkovno mnoˇzico. Na podatkih smo preizkusili veˇcje ˇstevilo modelov strojnega uˇcenja za napovedovanje odjema elektriˇcne energije. Naj- boljˇse rezultate so dosegli nakljuˇcni gozdovi in metoda podpornih vektorjev. Konˇcni rezultat diplomskega dela so napovedni modeli, ki se v kombinaciji z ekspertnim znanjem iz podroˇcja energetike lahko uporabljajo kot indikatorji preobremenitev elektroenergetskih transformatorjev.

Language:Slovenian
Keywords:elektroenergetski sistem, transformatorska postaja, stroj- no uˇcenje, napovedni modeli, indikatorji preobremenitev
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2022
PID:20.500.12556/RUL-134599 This link opens in a new window
COBISS.SI-ID:78691587 This link opens in a new window
Publication date in RUL:20.01.2022
Views:8780
Downloads:136
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Modeling transformer station operation with machine learning methods
Abstract:
In this research, we analyze and model thermal and electrical energy loads of energy transformer stations with the help of machine learning and numerical methods. Transformer stations are a key part of the electrical power system. They are the elements that connect energy sources to end-users. Because of an ever-increasing amount of transformer station overloads, this thesis focuses on analyzing and modeling thermal and electrical loads. For this reason, transformer stations have been equipped with temperature sensors. We combined transformer station temperature data with weather and energy usage data. We used multiple machine learning algorithms to predict elec- trical energy consumption. The best results were obtained by random forest and support vector machines. Our research results are forecasting models that can be combined with expert domain knowledge to predict transformer station overloads.

Keywords:electrical power system, transformer station, machine learning, forecasting models, overload indicators

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back