izpis_h1_title_alt

Homologija Hovanova : delo diplomskega seminarja
ID Gladek, Žiga (Author), ID Strle, Sašo (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (5,28 MB)
MD5: 3E1C4C665194DC40C7D6272CD3D568A8

Abstract
Delo se v osnovi tiče najbolj temeljnega problema teorije vozlov tj. klasifikacije vozlov. Vozel si lahko predstavljamo kot krožnico $S^1$, vloženo v evklidski prostor ${\mathbb R}^3$. Bolj splošno lahko govorimo o spletih, ki si jih lahko predstavljamo kot končno mnogo med seboj prepletenih vozlov. Za dva poljubna spleta se nato lahko vprašamo, ali je možno prvega deformirati v drugega, ne da bi ga medtem kjerkoli pretrgali? Odgovor na to vprašanje pa lahko pogosto dobimo s pomočjo spletnih invariant. To so preslikave na množici spletov, za katere velja, da poljubnima spletoma, ki se ju da deformirati drug v drugega, priredijo isto sliko. Če torej invarianta spletoma pripiše različni sliki, lahko nemudoma zaključimo, da se to ne da. Dandanes poznamo veliko primerov invariant, ena od teh je tudi homologija Hovanova, ki je dejansko invarianta na množici orientiranih spletov. Za njeno konstrukcijo so bistvena orodja iz algebraične topologije, poleg tega pa se izkaže, da je v tesni zvezi s še eno invarianto, imenovano Jonesov polinom.

Language:Slovenian
Keywords:vozel, splet, homologija, kobordizem, verižni kompleks
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2021
PID:20.500.12556/RUL-134105 This link opens in a new window
UDC:515.1
COBISS.SI-ID:91911427 This link opens in a new window
Publication date in RUL:23.12.2021
Views:1277
Downloads:132
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Khovanov homology
Abstract:
This thesis is in essence about the most fundamental problem of knot theory, that is, knot classification. We can imagine a knot as $S^1$ embedded in the three dimensional Euclidean space ${\mathbb R}^3$. More generally, we can talk about links. We can imagine these as finitely many knots, which are in some way interlaced. Given two arbitrary links, we can ask ourselves if it is possible to deform one into the other without cutting or tearing it anywhere in the process. We can often give an answer to this question with the use of link invariants. Link invariants are maps on the set of links, which map any two links that can be deformed to one another to the same image. Therefore, if a link invariant assigns to two links different images, we can conclude that it is in fact not possible to deform one to the other. Nowadays we know of many invariants. One of them is Khovanov homology, which is actually an invariant on the set of oriented links. Its construction relies heavily on tools from algebraic topology, and it turns out that there is a beautiful connection between this homology and another link invariant called Jones polynomial.

Keywords:knot, link, homology, cobordism, chain complex

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back