izpis_h1_title_alt

Sistem za ohranjanje uporabnikovega sodelovanja pri igranju računalniških iger
ID Penca, David (Author), ID Bosnić, Zoran (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (8,75 MB)
MD5: 64F5819EFC08383D0DE273AF0D13CA41

Abstract
V magistrskem delu predstavimo sistem za ohranjanje uporabnikovega sodelovanja pri igranju računalniških iger, ki deluje na podlagi merjenja psihofizičnih značilk, kot so povprečni srčni utrip, galvanski odziv kože in električna aktivnost v možganih. Pokazati želimo, da je ročno prilagajanje karakteristik računalniških iger možno prepustiti avtomatiziranemu sistemu za ohranjanje uporabnikove vključenosti. Implementacijo takšnega sistema smo razdelili na dva funkcijska sklopa. Prvi sklop predstavlja model vključenosti igralca, ki na podlagi karakteristik igranja in izmerjenih psihofizičnih značilk, ocenjuje uporabnikovo trenutno vključenost. Model uporabnikove vključenosti smo zgradili z uporabo metod nadzorovanega strojnega učenja. Drugi sklop sistema predstavlja algoritem, ki ob zaznanem padcu vključenosti igralca spreminja karakteristike igre z namenom ohranjati uporabnikovo vključenost. Za učenje optimalne strategije spreminjanja karakteristik igre smo uporabili spodbujevano učenje.

Language:Slovenian
Keywords:vključenost v igro, strojno učenje, računalniška igra, ADABoost, Q-učenje
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2021
PID:20.500.12556/RUL-133618 This link opens in a new window
COBISS.SI-ID:91293443 This link opens in a new window
Publication date in RUL:06.12.2021
Views:1031
Downloads:92
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:A system for maintaining user’s engagement in computer games
Abstract:
In our master thesis, we present a system for maintaining a user's engagement in computer games based on measured psychophysical indicators such as average heartbeat, galvanic skin response and electric activity in the brain. We wish to prove that hand adjustment of video game parameters can instead be performed by an automated system for maintaining player engagement. We split the implementation of such a system into two separate sections. The first section consists of a user-engagement model that predicts the current user engagement based on the player's gameplay characteristics and measured psychophysical indicators. We have built the engagement model using supervised machine learning techniques. The second section of the system is represented by an algorithm that, when a drop in user engagement is detected, adjusts game parameters in order to maintain user engagement. The optimal strategy for changing game parameters was learned through the use of reinforcement learning.

Keywords:game engagement, machine learning, computer game, ADABoost, Q-learning

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back