izpis_h1_title_alt

Skupno modeliranje pri bolnikih s srčnim popuščanjem
ID Vavdi, Gregor (Author), ID Kejžar, Nataša (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (4,54 MB)
MD5: 2AD9C701D31FF895FB988E4A9CDCE377

Abstract
V magistrskem delu predstavljamo metodologijo skupnega modeliranja in z njo analiziramo podatke o bolnikih s srčnim popuščanjem. Podatki so zbrani v okviru projekta United4Health za 128 bolnikov v obdobju štirih let. Dnevno merjene (telemetrične) spremenljivke, ki jih uporabljamo za gradnjo modelov, so: diastolični krvni tlak, sistolični krvni tlak in srčni utrip. Na primeru diastoličnega tlaka predstavljamo izbiro različic modelov, ki smo jih ocenili, vrednotimo rezultate in interpretiramo razlike med njimi. Modele primerjamo s tistimi iz članka Njagi in sod. (2013), v katerem so naredili analizo pri enakem tipu podatkov. Predstavljamo in uporabljamo tudi Coxov model s časovnimi spremenljivkami in rezultate primerjamo s skupnimi modeli.

Language:Slovenian
Keywords:skupno modeliranje, skupni model, longitudinalni podatki, linearni mešani model, analiza preživetja, Coxov model s časovnimi spremenljivkami, dinamični diskriminantni indeks, slučajni vplivi, trenutna vrednost
Work type:Master's thesis/paper
Organization:FE - Faculty of Electrical Engineering
Year:2021
PID:20.500.12556/RUL-132835 This link opens in a new window
COBISS.SI-ID:83615747 This link opens in a new window
Publication date in RUL:04.11.2021
Views:10454
Downloads:206
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Joint modelling approach for chronic heart failure patients
Abstract:
In the master's thesis, we present the methodology of joint modeling and analyze data on patients with chronic heart failure. Data were collected as part of the United4Health project for 128 patients over four years. Diastolic blood pressure, systolic blood pressure, and heart rate were selected for daily variables. In the case of diastolic pressure, we present the choice of several types of models that we have built due to the nature of the data and we interpreted the differences between them. We follow the article Njagi et al. (2013), in which they made the same analysis. We also use the extended Cox model and compare it with the joint modeling methodology.

Keywords:joint modeling, joint model, longitudinal data, linear mix model, survival analysis, extended Cox model, random effect, current value, dinamic discriminant index

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back