Details

Bi-continuous semigroups for flows on infinite networks
ID Budde, Christian (Author), ID Kramar Fijavž, Marjeta (Author)

.pdfPDF - Presentation file, Download (464,80 KB)
MD5: 34E907486B87D21364BDE99822B738EB
URLURL - Source URL, Visit https://www.aimsciences.org/article/doi/10.3934/nhm.2021017 This link opens in a new window

Abstract
We study transport processes on infinite metric graphs with non-constant velocities and matrix boundary conditions in the L$^\infty$-setting. We apply the theory of bi-continuous operator semigroups to obtain well-posedness of the problem under different assumptions on the velocities and for general stochastic matrices appearing in the boundary conditions.

Language:English
Keywords:transport equations, infinite metric graphs, bi-continuous operator semigroups, Bochner L$^\infty$-spaces, perturbations
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:FGG - Faculty of Civil and Geodetic Engineering
Publication status:Published
Publication version:Version of Record
Year:2021
Number of pages:Str. 553-567
Numbering:Vol. 16, no. 4
PID:20.500.12556/RUL-132825 This link opens in a new window
UDC:517.98
ISSN on article:1556-1801
DOI:10.3934/nhm.2021017 This link opens in a new window
COBISS.SI-ID:83418883 This link opens in a new window
Copyright:
Podatek o licenci CC BY 4.0 je naveden na pristajalni strani članka – glej izvorni URL zgoraj. (Datum opombe: 15. 5. 2025)
Publication date in RUL:04.11.2021
Views:1384
Downloads:182
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Networks and heterogeneous media
Shortened title:Netw. heterog. media
Publisher:American Institute of Mathematical Sciences
ISSN:1556-1801
COBISS.SI-ID:15044697 This link opens in a new window

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.

Secondary language

Language:Slovenian
Keywords:transportna enačba, neskončni metrični grafi, bi-zvezne operatorske polgrupe, Bochnerjevi L$^\infty$-prostori, perturbacije

Projects

Funder:EC - European Commission
Funding programme:Erasmus

Funder:DAAD
Funding programme:TKA
Project number:308019
Name:Coupled systems and innovative time integrators

Funder:ARRS - Slovenian Research Agency
Project number:P1-0222
Name:Algebra v teoriji operatorjev in finančna matematika

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back