izpis_h1_title_alt

Izrek o metulju in njegove posplošitve : magistrsko delo
ID Češek, Ema (Author), ID Vavpetič, Aleš (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (3,40 MB)
MD5: 00F726AE5B6D54B142EDBA47E355D9FD

Abstract
Magistrsko delo obravnava izrek o metulju, ki je izrek evklidske geometrije, in številne njegove posplošitve. Poleg dokazov izreka z osnovnimi pojmi evklidske geometrije delo vključuje dokaz izreka v razširjeni evklidski ravnini. Za slednjega so v evklidski geometriji vpeljani pojmi dvorazmerje, harmonična četverka, inverzija, pol in polara ter dokazana Cevov in Menelajev izrek. Delo obravnava posplošitvi avtorjev Murray S. Klamkina in Vladimirja Volenca ter izrek o dveh metuljih. Za dokaz izreka o metulju v projektivni geometriji se delo osredotoči na pojme realne projektivne ravnine kot so harmonična četverka, projektivnost, involucija, polarnost in stožnica ter dokaže Desarguesov izrek o involuciji. Posplošitev izreka o metulju v kompleksni projektivni ravnini je dokazana s pomočjo Pascalovega izreka.

Language:Slovenian
Keywords:izrek o metulju, razširjena evklidska ravnina, projektivna geometrija, Desarguesov izrek o involuciji, Pascalov izrek
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2021
PID:20.500.12556/RUL-132731 This link opens in a new window
UDC:514
COBISS.SI-ID:82941443 This link opens in a new window
Publication date in RUL:01.11.2021
Views:1880
Downloads:174
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Butterfly theorem and its generalizations
Abstract:
This Master's thesis discusses the butterfly theorem of Euclidean geometry and many of its known generalizations. In addition to two proofs of the theorem with basic concepts of Euclidean geometry, the thesis also includes proof of the theorem in the extended Euclidean plane. For the latter, concepts such as cross ratio, harmonic range, inversion and pole-polar relation are introduced in Euclidean geometry and the theorems of Ceva and Menelaus are proven. The thesis addresses the generalizations of the butterfly theorem by Murray S. Klamkin's and Vladimir Volenec's and the double butterfly theorem. To prove the projective butterfly theorem, the thesis focuses on concepts of the real projective plane such as harmonic conjugacy, projectivity, involution, polarity and conics. It also proves Desargues' involution theorem. A generalization of the butterfly theorem in the complex projective plane is proved with the help of Pascal's theorem.

Keywords:butterfly theorem, extended Euclidean plane, projective geometry, Desargues' involution theorem, Pascal's theorem

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back