izpis_h1_title_alt

Modeliranje interakcij protein-RNA z uporabo globokih konvolucijskih nevronskih mrež nad grafi
ID Gregorc, Anže (Author), ID Curk, Tomaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (4,41 MB)
MD5: 0175FD21CFD4E2214243F9ACCC3E4DE7

Abstract
Interakcije protein-RNA sodelujejo v mnogih bioloških procesih. Modeliranje in preučevanje molekul proteinov in RNA nam tako lahko pomaga pri razumevanju medsebojnega delovanja proteinov in RNA. V magistrskem delu smo izdelali postopek napovedovanja interakcij protein-RNA na proteinu z uporabo konvolucijskih nevronskih mrež nad grafi. Podatke smo pridobili iz podatkovne baze PDB, jih predelali v strukturo grafa in vsakemu atomu dodali primerne značilke. Tako so podatki primerni za modele nevronskih mrež, ki delujejo nad grafi. Modele smo ovrednotili in prikazali rezultate z različnimi merami uspešnosti. Najboljši model dosega dobre rezultate (ROC AUC = 0,9). Implementirali smo tudi grafični vmesnik, ki v 3D prostoru prikaže strukturo proteinov in napovedana mesta interakcij z RNA.

Language:Slovenian
Keywords:molekulske interakcije, strojno učenje, globoke nevronske mreže, konvolucijske nevronske mreže nad grafi
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2021
PID:20.500.12556/RUL-132218 This link opens in a new window
COBISS.SI-ID:83603715 This link opens in a new window
Publication date in RUL:18.10.2021
Views:1275
Downloads:142
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Modeling protein-RNA interactions with deep graph convolutional neural networks
Abstract:
Protein-RNA interactions are involved in many biological processes. Modeling and studying protein and RNA molecules can help us understand the workings of proteins and RNA. In this master's thesis, we developed a procedure for predicting protein-RNA interactions on a protein using convolutional neural networks over graphs. We obtained the data from the PDB database, preprocessed it into a graph structure, and added appropriate features to each atom. Thus, the data are suitable for graph neural network models. We analyzed the models and presented the results with different performance metrics. The best model achieved good results (ROC AUC = 0.9). We also implemented a graphical interface to visualize the structure of proteins and the predicted sites of interaction with RNA in 3D space.

Keywords:molecular interactions, machine learning, deep neural networks, graph convolutional neural networks

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back