izpis_h1_title_alt

Prostorska zahtevnost grafovskih dominacijskih iger
ID RAJTER, MIHA (Author), ID Raič, Martin (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (836,37 KB)
MD5: 8EEE1E1D184654818763BEB1AAA2F56D

Abstract
V nalogi obravnavamo dominacijske igre na grah, njihove različice in igralno dominacijsko število, ki je število potez v poteku dominacijske igre, v kateri oba igralca igrata optimalno. Ukvarjamo se s prostorsko zahtev- nostjo izračuna igralnega dominacijskega števila. Pokažemo, da je igralno dominacijsko število možno izračunati z algoritmom, ki ima linearno pro- storsko zahtevnost, kar pomeni, da je problem v razredu PSPACE. Končno dokažemo, da je problem dominacijskih iger na grah PSPACE-poln za pre- vedbe v polinomskem času. To storimo s sklicevanjem na PSPACE-polnost problema zmagovalca igre na izjavnih formulah v konjuktivni obliki brez ne- gacij (POS-CNF).

Language:Slovenian
Keywords:Dominacijske igre na grah, Igralno dominacijsko število, Časovna zahtevnost, Prostorska zahtevnost, Turingovi stroji, PSPACE-polnost, POS-CNF problem.
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
FMF - Faculty of Mathematics and Physics
Year:2021
PID:20.500.12556/RUL-132122 This link opens in a new window
COBISS.SI-ID:82280451 This link opens in a new window
Publication date in RUL:13.10.2021
Views:944
Downloads:92
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Space complexity of graph domination games
Abstract:
We consider domination games on graphs, their variants and the game domination number, which is the number of moves made in a graph domi- nation game assuming both players play optimally. We deal with the space complexity the game domination number. We show that the game domina- tion number can be calculated with an algorithm that runs in linear space complexity, which means that the problem is in PSPACE. Finally, we prove that the domination game on graphs problem is PSPACE-complete under polynomial time reductions. We do that using the PSPACE-completeness of the game problem on propositional formulas in conjunctive normal form without negations (POS-CNF).

Keywords:Domination game on graphs, Game domination number, Time complexity, Space complexity, Turing machines, PSPACE-completeness, POS- CNF problem.

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back