izpis_h1_title_alt

Učinkovito poizvedovanje po zbirki slik
ID ČOKL, OSKAR (Author), ID Čehovin Zajc, Luka (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (6,77 MB)
MD5: 50895CFEA2BC917B72AA03A199CE193B

Abstract
Z digitalizacijo zajema slik se je njihova koliˇcina izjemno poveˇcala, obenem pa je iskanje po zbirkah slik postalo zelo teˇzavno. V diplomi obravnavamo problem poizvedovanja po zbirki slik na podlagi referenˇcnega primera. Upo- rabljamo sodoben pristop na podlagi opisnikov, pridobljenih iz globokega modela na osnovi konvolucijske nevronske mreˇze. Taki opisniki niso redki in nad njimi ne moremo zgraditi obrnjenih indeksov. V naˇsem pristopu se za poizvedovanje posluˇzimo hierarhiˇcnega gruˇcenja z drevesom na podlagi pogojnih verjetnosti. Okoli drevesne strukture zgradimo prototip storitve za poizvedovanje po zbirki slik, ki lahko odzivno streˇze veˇc uporabnikov hkrati. Reˇsitev ovrednotimo napram poizvedovanju s surovo silo in ugotovimo, da je predlagani pristop bolj ustrezen pri veliki koliˇcini slik, saj porabi manj pomnilnika in manj ˇcasa za poizvedovanje.

Language:Slovenian
Keywords:poizvedovanje, slike, poizvedovanje s primerom, skalabil- nost, CD-drevo, vrsta opravil.
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2021
PID:20.500.12556/RUL-132003 This link opens in a new window
COBISS.SI-ID:82086659 This link opens in a new window
Publication date in RUL:08.10.2021
Views:865
Downloads:93
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Efficient content-based image retrieval
Abstract:
With the digitalization of capturing images, the amount of images drasti- cally increased and searching through a collection of images became very hard. This dissertation deals with querying a collection of images based on a reference image. We use a modern approach based on features obtained from a deep model based on a convolutional neural network. Such features are not sparse and we cannot build inverted indexes with them. In our approach we use hierarchical clustering with a conditional density tree for querying. We build a prototype of an image search service with the tree structure which is able to responsively serve multiple users at the same time. We test the solution against a brute force approach and find that the suggested method is more suited for large collections of images, as it consumes less memory and needs less time for queries.

Keywords:querying, images, query by example, scalability, CD-tree, task queue.

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back