izpis_h1_title_alt

Računska zahtevnost binomskega modela : delo diplomskega seminarja
ID Pirc, Brina (Author), ID Kokol-Bukovšek, Damjana (Mentor) More about this mentor... This link opens in a new window, ID Toman, Aleš (Comentor)

.pdfPDF - Presentation file, Download (379,70 KB)
MD5: 81362A0362B431446E68B21B683FD06C

Abstract
Binomski model je model finančnega trga z eno delnico in netveganim bančnim računom, ki se uporablja za vrednotenje delniških opcij. V delu diplomskega seminarja nas je zanimalo, ali formulo za vrednotenje evropskih nakupnih opcij z binomskim modelom lahko zapišemo v zaključeni obliki. To je pomembno, saj zaključena oblika pripomore k učinkovitejšemu računanju. Formula za premijo vsebuje hipergeometrično vrsto. Pri iskanju zaključenih oblik hipergeometričnih vrst smo si pomagali z Gosperjevim algoritmom, katerega glavna značilnost je, da je popoln. To pomeni, da nam bodisi vrne vsoto zapisano v zaključeni obliki bodisi nam pove, da taka oblika ne obstaja. S pomočjo algoritma smo prišli do zaključka, da pri vrednotenju opcij z binomskim modelom zaključena oblika ne obstaja.

Language:Slovenian
Keywords:Gosperjev algoritem, računanje v zaključeni obliki, binomski model, vrednotenje opcij, hipergeometrična zaporedja
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2021
PID:20.500.12556/RUL-131663 This link opens in a new window
UDC:519.8
COBISS.SI-ID:79164163 This link opens in a new window
Publication date in RUL:01.10.2021
Views:1058
Downloads:63
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Computational complexity of the binomial model
Abstract:
The binomial option pricing model is a financial market model with a stock and a risk-free bank account. It is used for the valuation of stock options. The main question of this thesis is whether the plain-vanilla European option pricing formula can be expressed in closed form. This is important because a closed-form solution increases the effectiveness of the calculations. The formula mentioned above contains a hypergeometric series. To find closed-form expressions for hypergeometric series, we use Gosper's algorithm. The key feature of the algorithm is the so-called completeness. This means that it either returns a sum in closed form or tells us that there is no such form. In the end, we conclude that the binomial option pricing formula for plain-vanilla European options has no such closed form.

Keywords:Gosper's algorithm, closed-form computation, binomial model, option pricing, hypergeometric sequences

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back