Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Lokalizacija športnikov v ekipnih športih iz večih pogledov preko ocenjevanja položaja telesa
ID
KAVAŠ, TOMAŽ
(
Author
),
ID
Perš, Janez
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(19,11 MB)
MD5: 4A57A26670A9B1CA6406F1EDBCCC0D62
Image galllery
Abstract
Dandanes se na več področjih uporabljajo sistemi z večimi kamerami. Eno od teh področij je šport. V športu nam sistem zagotavlja pokritje celotnega igrišča. Tako zajamemo obsežno gibanje igralcev skozi celotno igrišče (kot na primer napad v košarki, kjer se lahko celotna ekipa v zelo kratkem času pomakne skozi celotno igrišče). Te informacije so zelo zaželene v športu, saj se uporabijo za analizo igre in za odkrivanje šibkih točk neke ekipe. Vendar pa pridobitev teh informacij ni trivialno. Začetna težava je lahko pri sami sinhronizaciji sistema, saj so v večini primerov kamere prosto tekoče, brez sinhronizacijskega signala. Prav tako pa potrebujemo algoritem, ki lahko iz takega sistema izlušči informacije, ki jih potrebujemo. V tem delu predstavljamo metodo, ki omogoča sinhronizacijo sistema večih kamer. Metoda tudi vključuje algoritem, ki lahko iz sinhroniziranega sistema večih kamer, pridobi 3D točke igralcev in njihove trajektorije. V nalogi smo najprej interpolirali pridobljene posnetke, kar nam je omogočilo sinhronizacijo posnetkov. Po sinhronizaciji smo nato z uporabo nevronske mreže OpenPose na vseh posnetkih detektirali igralce in pridobili njihove 2D točke skeletov. Pridobljene podatke smo nato posredovali sledilcu, ki določi 3D točke igralcev in njihove trajektorije. Na koncu smo dobljene rezultate primerjali z rezultati, ki so bili pridobljeni s tretjim sledilcem in tako ovrednotili naš algoritem.
Language:
Slovenian
Keywords:
računalniški vid
,
sledenje
,
trajektorija
,
sinhronizacija
,
sistem večih kamer
Work type:
Master's thesis/paper
Organization:
FE - Faculty of Electrical Engineering
Year:
2021
PID:
20.500.12556/RUL-131625
COBISS.SI-ID:
79152387
Publication date in RUL:
30.09.2021
Views:
1073
Downloads:
260
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
KAVAŠ, TOMAŽ, 2021,
Lokalizacija športnikov v ekipnih športih iz večih pogledov preko ocenjevanja položaja telesa
[online]. Master’s thesis. [Accessed 22 March 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=131625
Copy citation
Share:
Secondary language
Language:
English
Title:
Localization of Athletes in Team Sports From Multiple Viewpoints Using Pose Estimation
Abstract:
Today multi-camera systems are used in large variety of fields. One of the fields is sports. In sports, the system is used to cover the whole playground. That way we can capture large scale motion during a game (for example, the motion of a whole basketball team running across the entire playground, when performing an attack). All these information from the videos are very desirable in sports, because they can be used to analyze the game and to discover a team's weaknesses. But getting this information is not trivial. The first issue that we could run into is with the synchronization of the whole system, because in most cases free running cameras are used without a synchronizing signal. We also need an algorithm that can extract the information we need from such a system. In this work we present a method that allows us to synchronize a multi-camera system. The method also includes an algorithm that can calculate 3D points of players and their trajectories from a synchronized multi-camera system. We first interpolated the obtained videos, which allowed us to synchronize them. After the synchronization, we used a deep neural network OpenPose to detect all the players on the synchronized videos and get their 2D skeletal points. The obtained data is then used as an input for our algorithm (tracker) to calculate 3D points of the players and their trajectories. Finally we compared our results with the results obtained by another tracker and based on that evaluated the performance of our algorithm.
Keywords:
computer vision
,
tracking
,
trajectories
,
sinhronization
,
multi-camera system
Similar documents
Similar works from RUL:
Searching for similar works...
Similar works from other Slovenian collections:
Back