izpis_h1_title_alt

Kombinatorična igra Brstički
ID KUHAR, JANEZ (Author), ID Fijavž, Gašper (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (415,56 KB)
MD5: 6A31AE2A5CBF718938056C211D300E13

Abstract
V delu obravnavamo igro Brstički (angl. Sprouts). Igralca na listu papirja izmenjaje rišeta poteze in z njimi dodajata nove brstičke. Zmagovalec je tisti, ki nariše zadnjo potezo. Brstički so nepristranska kombinatorična igra in zato po Sprague-Grundyjevem izreku enakovredni igranju igre Nim. Osnovo za modeliranje igre predstavljajo ravninski grafi. Kombinatorično lahko igro opišemo kot ravninski graf, kjer so brstički vozlišča, poteze pa povezave. Geometrijsko lahko poteze predstavimo z Bézierjevimi zlepki. Naš prispevek je pajčevina. Gre za navidezne povezave na začetku igre, ki brstičke povežejo v vpeto drevo. Pajčevina zagotavlja povezanost slike igre skozi celo igro, s čimer je vsaka poteza nedvoumno določena. V sklopu dela smo izdelali tudi aplikacijo za igranje.

Language:Slovenian
Keywords:brstički, nepristranske kombinatorične igre, ravninski grafi
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2021
PID:20.500.12556/RUL-131577 This link opens in a new window
COBISS.SI-ID:79848195 This link opens in a new window
Publication date in RUL:29.09.2021
Views:3053
Downloads:101
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Sprouts - a combinatorial game
Abstract:
Sprouts is a paper-and-pencil game where two players take turns connecting sprouts and adding a new sprout along the connection. The player who makes the last move wins. The game of Sprouts is an impartial combinatorial game and thus by Sprague-Grundy theorem equivalent to a game of Nim. Planar graphs are the basis for a computer representation of Sprouts. Combinatorically, a game is a planar graph with sprouts as its vertices and moves as its edges. In addition, player's moves also have geometric components. Each move is a sequence of Bézier splines. Our contribution is the cobweb. A cobweb is comprised of the virtual edges which connect the initial sprouts into a spanning tree. The cobweb guarantees uniqueness of moves by maintaining a connected structure. As part of this work, a multi-platform application for playing Sprouts has been developed.

Keywords:sprouts, impatial games, planar graphs

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back