izpis_h1_title_alt

Vpeljava priporočil in personalizirane vsebine za optimizacijo poslovanja spletnih igralnic
ID Stavanja, Jaka (Author), ID Lavbič, Dejan (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (2,48 MB)
MD5: 8F223618AB0E3ADE6DAADA68D8C1EAC0

Abstract
V spletnem igralništvu obstaja malo znanstvenih raziskav, ki bi opisale optimizacijo poslovanja z uporabo priporočilnih sistemov za igralniške igre, hkrati pa tudi ni moč najti, kateri pristopi za ta namen delujejo najbolje. Skupaj z obstoječo spletno-igralniško programsko platformo bi želeli v izbranem podjetju ponuditi tudi priporočilno logiko za optimizacijo poslovanja strankinih spletnih igralnic. To storimo z izdelavo priporočilnega sistema za igre, s pomočjo oblačnih storitev in podatkov o obnašanju igralcev ter njihovih lastnosti. Opišemo prav tako, kako bi lahko tak sistem vgradili v obstoječo arhitekturo v podjetju. Nato preizkusimo različne pristope in s pomočjo zgodovinskih podatkov ovrednotimo različne priporočilne algoritme. Poskusimo tudi z dinamičnim dodeljevanjem različnih algoritmov različnim uporabnikom. Po ovrednotenju identificiramo Alternating Least Squares (ALS) kot najboljšega za naše potrebe priporočanja s pomočjo testnega pristopa Leave-One-Game-Out (LOGO). Ta metoda ponovno pravilno napove 63,4 odstotka iger, ki jih iz učnih podatkov izvzamemo. Ugotovimo tudi, da gručenje pred algoritmi bistveno ne doprinese k natančnosti priporočil. Pri ALS in LOGO ne doprinese ničesar. Na koncu s časovno simulacijo pokažemo, da bi bilo za manjše izgube natančnosti, ob morebitnem testu na produkciji, smiselno uporabiti Multi-Armed Bandit (MAB) algoritem Softmax.

Language:Slovenian
Keywords:priporočilni sistemi, spletno programiranje, spletne igralnice, igre na srečo, iGaming
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2021
PID:20.500.12556/RUL-131576 This link opens in a new window
COBISS.SI-ID:80906755 This link opens in a new window
Publication date in RUL:29.09.2021
Views:1138
Downloads:139
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Use of recommendations and personalized content for business optimization in online casinos
Abstract:
There have been few articles describing business optimization using recommendation engine approaches for slot games in online gambling, and there is not much information available about which approach works best in that scenario. Along with an existing online gambling software platform, we want to offer our customers the necessary recommendation logic to optimize their business. We create a game recommender system using cloud technologies and data about players and their playing behavior. We describe how we can integrate it into the current software architecture used in the company. We then test different approaches, evaluate different algorithms using historical data, and explore techniques of assigning algorithms to different players dynamically. After running the experiments, we find that the Alternating Least Squares (ALS) algorithm produces the best recommendations for our scenario. We test the algorithms using the Leave-One-Game-Out (LOGO) testing approach. ALS successfully predicts back 63.4 percent of games that we remove from the training set. We also conclude that pre-clustering players does not help much with the precision of recommendations. In the case of ALS' LOGO test, it contributes nothing. Finally, we show that it would be good to use the Multi-Armed Bandit (MAB) Softmax algorithm in a production test scenario to avoid losing too much precision.

Keywords:recommendation systems, web development, online casino, gambling, iGaming

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back