izpis_h1_title_alt

Napovedovanje količine odstrela divjih živali na Primorskem
ID JERMAN SLABE, IZA (Author), ID Šubelj, Lovro (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (469,58 KB)
MD5: 79C1BD54B632B73C83941F5AE72ECA43

Abstract
Lovska Zveza Slovenije in Zavod za gozdove vsako leto določita število predvidenga odstrela divjadi v Sloveniji. Da bi lovci, katerih število z leti upada, lažje dosegali rezultate, je bil razvit program za odločanje, ali naj se ob določenih pogojih odpravijo na lov. Podatkom o dnevnem številu odstrela v posameznih loviščih so bili pridruženi podatki o vremenu in dodatne informacije o lovskih družinah, razmerah ter divjadi. Iz velikega nabora atributov je izbrana podmnožica najpomembnejših in na tako izbranih podatkih s pomočjo pogosto uporabljenimi metodami strojnega učenja narejen model odločanja. Uporabljene metode so metoda $k$-najbližjih sosedov, linerna regresija, metoda podpornih vektorjev, umetne nevronske mreže in naključni gozdovi. Za najbolj uspešen model se je izkazalo napovedovanje z naključnimi gozdovi, ki predvidi, ali se je primerno za vikend odpraviti na lov. Za atribute, ki najbolj vplivajo na odločitev odprave na lov, sta se izkazala veter in pojav megle.

Language:Slovenian
Keywords:strojno učenje, regresija, lovstvo
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
FMF - Faculty of Mathematics and Physics
Year:2021
PID:20.500.12556/RUL-131279 This link opens in a new window
COBISS.SI-ID:78960387 This link opens in a new window
Publication date in RUL:24.09.2021
Views:1442
Downloads:101
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Predicting hunting success of wild animals in Primorska region
Abstract:
Every year, the Hunters’ Association of Slovenia and the Slovenia Forest Service determine the annual cull. As the number of hunters is declining, a program has been developed to help them achieve the expected results. The program helps with their decision whether to go hunting on a specific day based on existing and predicted conditions. Data about the daily number of culls in individual hunting areas was combined with the data about time of the culls and additional information about hunting families, conditions and game. From a large set of attributes, a subset with the most important attributes is selected. On that subset, a decision-making model is made with the help of the most frequently used machine learning methods. Used methods are $k$-nearest neighbours, linear regression, support vector regression, artificial neural networks, and random forests. The most successful model was predicted with random forests which informs whether hunters should go hunting for the weekend. Attributes which best define the decision to go hunting proved to be wind strength and the presence of fog.

Keywords:machine learning, regression, hunting

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back