izpis_h1_title_alt

Potence pozitivnih matrik : delo diplomskega seminarja
ID Žitko, Tinkara (Author), ID Dolžan, David (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (382,86 KB)
MD5: 8BBE9D1620A039B69FB4C91C98DAF9FC

Abstract
Diplomska naloga se osredotoča na potence pozitivnih matrik. Te so tesno povezane z lastnimi vrednostmi in lastnimi vektorji matrik, zato delo razloži postopek za njihovo računanje in lastnosti matrik v povezavi z njimi. Na podlagi Jordanove kanonične forme je v delu razložen preprostejši postopek za računanje potenc in hkrati tudi drugih funkcij matrik. Razložene so tudi lastnosti potenc stohastičnih oziroma verjetnostnih matrik. Osrednja izreka dela sta Perron-Frobeniusov in Perronov izrek. Prvi razloži lastnosti pozitivnih matrik, ki jih nato drugi uporabi pri računanju limit zaporedja potenc pozitivnih matrik. Vse preučeno je na koncu uporabljeno na primerih iz realnega življenja, kjer lahko vidimo uporabnost potenc pozitivnih matrik in razlog zakaj smo to temo sploh preučevali.

Language:Slovenian
Keywords:lastna vrednost, lastni vektor, pozitivna matrika, nenegativna matrika, Perron-Frobeniusov izrek, Perronov izrek, potence matrik, Jordanova kanonična forma, stohastične matrike
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2021
PID:20.500.12556/RUL-131250 This link opens in a new window
UDC:512
COBISS.SI-ID:78748163 This link opens in a new window
Publication date in RUL:24.09.2021
Views:1800
Downloads:114
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Powers of positive matrices
Abstract:
The thesis focuses on powers of positive matrices. They are closely related to eigenvalues and eigenvectors of said matrices. For this reason the thesis explains the procedure for calculating eigenpairs and their characteristics. On the basis of Jordan normal form the thesis explains a simpler way of calculating powers of matrices and also other matrix functions. It also explains the characteristics of powers of stochastic or probability matrices. The centre theorems of this thesis are Perron-Frobenius and Perron theorem. The first focuses on characteristics of positive matrices, which then the second uses to compute limits of sequences of powers of positive matrices. Everything we learn is then used in examples from real life, where we can see the usefulness of powers of positive matrices and the reason we started studying them in the first place.

Keywords:eigenvalue, eigenvector, positive matrix, nonnegative matrix, Perron-Frobenius theorem, Perron theorem, powers of matrices, Jordan normal form, stochastic matrices

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back