izpis_h1_title_alt

Poincaré-Mirandov izrek : delo diplomskega seminarja
ID Lipnik, Barbara (Author), ID Vavpetič, Aleš (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,25 MB)
MD5: EADCAF7168F2F38F3B63266264564818

Abstract
Diplomsko delo obravnava posplošitev dobro poznanega izreka v eni dimenziji, in sicer izreka o vmesni vrednosti. Natančneje, njegove posledice, ki zagotovi obstoj ničle funkcije. Ta izrek je dobro poznan tudi kot izrek o ničli. Dijaki se z njim srečajo že v srednji šoli, študentom matematike je že nekaj samoumevnega. Izrek o ničli nam pove, da ima vsaka zvezna funkcija na zaprtem intervalu, če v robnih točkah zavzame nasprotno predznačeni vrednosti, vsaj eno ničlo. Izrek lahko, z nekaterimi modifikacijami, posplošimo na poljubno dimenzijo. V delu dokažemo, da ima vsaka zvezna preslikava na enotski kocki v $n$-dimenzionalnem evklidskem prostoru, pod določenim pogojem, vsaj eno ničlo. Pogoj, ki ga potrebujemo, je, da so komponentne funkcije te preslikave različno predznačene na ustreznih stranicah enotske kocke. V delu opišemo tudi ekvivalenco te posplošitve izreka o ničli oziroma Poincaré-Mirandovega izreka, in Brouwerjevega izreka o negibni točki. Predstavimo diskreten dokaz Poincaré-Mirandovega izreka, kjer si pomagamo s Steinhausovim izrekom o šahovnici. Predstavimo tudi možne posplošitve Poincaré-Mirandovega izreka na nekatere neskončno dimenzionalne prostore.

Language:Slovenian
Keywords:ničle funkcije, negibne točke, preslikave, zveznost, Poincaré-Mirandov izrek
Work type:Bachelor thesis/paper
Organization:FMF - Faculty of Mathematics and Physics
Year:2021
PID:20.500.12556/RUL-131151 This link opens in a new window
UDC:515.1
COBISS.SI-ID:78598147 This link opens in a new window
Publication date in RUL:23.09.2021
Views:714
Downloads:69
Metadata:XML RDF-CHPDL DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:The Poincaré-Miranda theorem
Abstract:
This thesis deals with the generalization of a well-known theorem in one dimension, namely the Intermediate value theorem. Specifically, its corollary, which proves that a function has a root. This theorem is well known. Students learn about it already in high school. For math students, this is almost a self-evident result. The theorem says that every continuous function on a closed interval that changes sign at the boundary points has at least one root in this interval. With some modifications, this theorem can be generalized to an arbitrary dimension. We prove that every continuous map on a unit cube in a $n$-dimensional Euclidean space has, under a certain condition, at least one root. The assumption we need is that each component function of the map changes sign on the corresponding sides of the unit cube. Here, we also show the equivalence of this generalization of a one-dimensional theorem, namely the Poincaré-Miranda theorem, and The Brouwer fixed point theorem. We give a discrete proof of the Poincaré-Miranda theorem using the Steinhaus chessboard theorem. We present possible generalizations of the Poincaré-Miranda theorem to certain infinite-dimensional spaces.

Keywords:roots of a function, fixed points, maps, continuity, Poincaré-Miranda's theorem

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back