izpis_h1_title_alt

Normalne matrike : delo diplomskega seminarja
ID Mulej, Tim (Author), ID Drnovšek, Roman (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (514,64 KB)
MD5: A835643FA210D016A8B65CDBB153EB7E

Abstract
Normalnost matrik je ena od bolj zanimivih poglavij linearne algebre. Ne samo zato, ker imajo normalne matrike razmeroma preprosto definicijo, ampak tudi zato, ker so uporabne v praksi, kar je razlog, da je bilo odkritih že $89$ karakterističnih lastnosti normalnih matrik. V tem delu smo si izbrali $25$ karakterističnih lastnosti in pokazali ekvivalence med njimi. Posvetili pa smo se tudi vprašanju, kako “blizu” sta si dve kvadratni matriki glede na njune lastne vrednosti. Ali še bolj zanimivo, kaj se zgodi z lastnimi vrednostmi matrike, če matriko malo perturbiramo. V tem delu smo na ti dve vprašanji odgovorili za normalne matrike.

Language:Slovenian
Keywords:matrika, lastna vrednost, lastni vektor, Schurjev razcep, polarni razcep, Hoffman-Wielandtov izrek, Sunov izrek
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2021
PID:20.500.12556/RUL-131038 This link opens in a new window
UDC:512
COBISS.SI-ID:78322435 This link opens in a new window
Publication date in RUL:22.09.2021
Views:1357
Downloads:104
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Normal matrices
Abstract:
Matrix normality is one of the most interesting topics in linear algebra and matrix theory, since normal matrices have not only simple structures under unitary similarity but also many applications, that is why it has been done a great deal of work on them. There are $89$ different characteristic properties. In this thesis we chose $25$ of those characteristic properties and proved their equivalence to basic definition of normal matrices. We were also interested in how “close” are the matrices in terms of their eigenvalues. More interestingly, if a matrix is “perturbed” a little bit, how would the eigenvalues of the matrix change? In this thesis we present answers to these two questions if the matrices are normal.

Keywords:matrix, eigenvalues, eigenvectors, Schur decomposition, polar decomposition, Hoffman–Wielandt theorem, Sun theorem

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back