izpis_h1_title_alt

Praštevilski izrek : delo diplomskega seminarja
ID Maier, Andraž (Author), ID Drinovec-Drnovšek, Barbara (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (587,41 KB)
MD5: 9EC92C664E198D898BE43733C9C55721

Abstract
V delu z analitičnimi metodami dokažemo praštevilski izrek. V ta namen predstavimo osnovno teorijo neskončnih produktov in vpeljemo Riemannovo funkcijo zeta. Izpeljemo Eulerjevo produktno formulo, poiščemo meromorfno razširitev funkcije zeta na desno polovico kompleksne ravnine in predpis za njen logaritmični odvod. Definiramo Mangoldtovo funkcijo in funkcijo psi ter z njuno pomočjo poiščemo ekvivalentno obliko praštevilskega izreka, ki ga nazadnje dokažemo z metodami kompleksne analize.

Language:Slovenian
Keywords:praštevilski izrek, Riemannova funkcija zeta
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2021
PID:20.500.12556/RUL-131035 This link opens in a new window
UDC:511
COBISS.SI-ID:77668611 This link opens in a new window
Publication date in RUL:22.09.2021
Views:1116
Downloads:133
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Prime number theorem
Abstract:
In this work, prime number theorem is proven using analytic methods. For this purpose elementary theory of infinite products is introduced and the Riemann zeta function is used. We derive the Euler product formula and find a meromorphic extension of the zeta function to the right half of the complex plane and the expression for its logarithmic derivative. We also define the Mangoldt and psi function and use them to find an equivalent formulation of the prime number theorem. Finally, the prime number theorem is proved using complex analytic methods.

Keywords:prime number theorem, Riemann zeta function

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back